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ABSTRACT
The iterative ellipscidal trimming algorithm is in-
troduced as both a clustering method and an estimator of
location and shape. 1Its power as a data analytic tool is
investigated and the asymptotic distribution of its
stationary point is derived. In addition, several scale

estimators are proposed and studied.
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Chapter 1

Introduction

It is not uncommon in scientific or technological
work for an investigator to be confronted with a collection
of entities and for him then to wonder whether that collection
is, in some sense, homogeneous or whether, instead, it is
made up of several distinct subgroups. That branch of
statistics known as cluster analysis is concerned with
providing a body of techniques which will be generally use-
ful in discovering subpopulations. It .s to this subject

that this dissertation seeks to make a contribution.

The central aim of this work is to introduce what we

shall refer to as the iterative ellipsocidal trimming algorithm

(for brevity's sake, IET) as a method for discovering clusters
and to study some of its properties. We define IET as follows.
suppose that we have n observations in Rk : Xl""'xn' To
start the algorithm, initial estimates (starting values)

of the mean and covariance of the cluster being sought must

be provided: (ﬂo, 20). Sometimes, when we are in complete
ignorance of the distribution of the X's, it is appropriate

to let ;0 = X; in other situations ;0 may be derived

from previous analysis or it may be an arbitrary point in a

certain region of Rk. Usually, ZO is taken to be I
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the k x k identity matrix. To perform an iteration, one
specifies a p, which represents the proportion of the
observations to be included in the computation of the next

estimates, (;, Z), and calculates the Mahalanobis distance

S, Nl IS | _
of each Xy from Mg ¢ Di = (xi uo)Z0 (Xi “0)4 Then,
u o= [1’11;.7]“l z X,
ieL
and
Z=lopl™ I (x;-wx -w
iel
I 2 2 . th
where L = {i : D} < D([np])}' Diyy 1is the r™" order

statistic of the s, and [t] 1is the greatest integer < t.
Of course, one performs the next iteration by again choosing

a p and then treating (;, 2) as the new (;0, 20). We

will say that IET has converged (for fixed p) if on two suc-
cessive iterations we find that L, the set of indices, does not
change. Equivalently, we will say that IET has converged

if (;, 2) stays the same on two successive iterations.

It is appealing to call this final estimate a stationary

point (of the sample). Sometimes, it is too time consuming

to wait for IET to converge; then it is reasonable to simply

continue until successive changes in the estimates (u, X)

are sufficiently small.
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In successive iterations of the algorithm, p may be
allowed to change or it may be kept constant; often thiz
decision may fruitfully be made interactively, that is to
say, after looking at the last (;, 2). The choice of a
sequence of p's will depend on the goal of the analysis.

We will have two separate but closely related intentions

in mind. First, we wish to find large clusters and second,
having found a large cluster, we wish to obtain robust
estimates of its mean and covariance, (u, Z)}, with the idea
of using them in the search for smaller clusters in the
tails of the large one. We hope to discuss the problem

of finding such "hidden" clusters in a subsequent paper.

It is pertinent to remark now, however, that we are
especially interested in IET because it appears to yield

a plausible estimator when there is asymmetric contamination

(for instance, a small cluster) in the tails of the sample.

In chapter 2 we deal with the problem of using IET
to discover clusters. There we also examine a certain
lack of robustness characteristic of "k-means" algorithms,
and how IET avoids this difficulty. Chapter 3 contains
a discussion of the asymptotic properties of IET, always
supposing that there are no outliers (isolated points far

away from the bulk of the observations) or small hidden

clusters. Instead, the data will be assumed to be purely
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from some spherically symmetric or ellipsoidal distribution.
The fourth chapter presents Monte Carlo results concerning
the performance of IET in the presence of outliers and

small clusters.

Finally, in chapter 5 we take up the gquestion of
scale estimation. When data that are far from (;, 2) are
trimmed, inevitably the next estimate of 7 1is biased
towards 0; bésically, E is an estimate of ¢ for some ¢
such that 0 < ¢ < 1. Now this is a matter of no consequence
when we are only interested in finding the location and
shape of a cluster. Furthermore, IET is unaffected when
I is multiplied by a constant, since the ordering of the
Mahalanobis distances is unchanged. However, when we want
to compare the D2 of an X to two different clusters,
it is imperative that we "scale up" our estimates of

their I's. We must, in essence, estimate and divide out

the "¢" referred to above.

Iterative ellipsoidal trimming has been investigated
before by other statisticians, most notably bv Gnanadesikan
and his coworkers Kettenring and Devlin {5, 7, 8]. The
focus in the past, however, has been on Monte Carlo studies
of the utility of this algorithm in the robust estimation of
covariance matrices. It has been shown to be reasonably

reliable for this purpose [5].
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Chapter 2

Finding Clusters

In this chapter we shall discuss and illustrate the
use of IET in discovering clusters in a data set, and
carry out a comparison with a natural competitor, the
k-means algorithm. It is expected that IET will be a use-
ful tool when one wishes to find ellipsoidal clusters in
a high dimensional Euclidean space (where by high we mean
"greater than two"). The basic rationale behind its use
is that it will tend to climb up density gradients, stopping
when it reaches an ellipsoidal region containing [np] observa-
tions whose sample mean is just its center, and whose sample

covariance will generate its "shape".

There are several k-means algorithms, the different
versions differing as to whether or not a covariance matrix
is estimated for each cluster and as to how many observations
are reclassified before the k means (and possibly, covariances)
are updated. We will consider two versions of this general
method; both of them update the means and covariances
after reclassifying all of the data. The following algorithm

will be referred to as k-means 2. Suppose Xl""’Xn are

our observations and (ﬂl,ll),...,(ak,lk) are our current

estimates of the means and covariances of k clusters. Let
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- =
D?. = (X, =- ;.)'ifl(x. - ;.) and classify X into the
ij i 3 3j i b] i :
joth cluster if
D2 = min D?..

g 1<5<k I

Let Lj = {i : X; 1is classified in the jth cluster}.

Then, the next estimates are

(1) _ -1
oy = Iyl jen, 4
and
MOy -1 ~(1) ~(1)
.= | L. . - . . - . ',
Z; | ]I iEL.(Xl My Xy = ug)
j

(where |S}, for a set S, is the number of elements S contains),
or, to put it another way, the sample means and covariances

of the new clusters. If we fix ij = I, the identity of the
appropriate dimension, for all Jj and update only the means
after reclassifying by Euclidean distance, then the above
algorithm reduces to what we shall call k-means 1. For

further discussion of k-means algorithms, one might refer

to either Hartigan's book on clustering algorithms (9] or

the volume by Duda and Hact on pattern recognition [6].

Chernoff appears to have been the first to suggest that
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it would be helpful to estimate the covariances of the
different clusters [3], though Rohlf ([1l] made a similar

recommendation in the context of hierarchical clustering.

The basic idea which underlies both IET and k-means
is that if one has an approximation to the mean of a cluster
and one computes a new estimate of the mean based only on
points currently thought to belong to the cluster (based on
the approximation), then the new estimate will be better
' than the old one. 1In one dimension, in the case of IET,
one imagines a situation like that in Figure 2.1. There,
the new estimate is the mean of all the observations con-
tained between the brackets and will clearly be closer to

the true mean than was the starting value.

Now there are three important ways in which k-means
and IET differ. IET defines the current cluster in a
rather conservative fashion, namely as those points within
some 02 of the current (;, E). On the other hand,

h

k-means defines the jt cluster as everything that is closer

~ ~

y to (uj, Zj) than to any of the other cluster centers.
Hence, a k-means cluster may have unbounded volume. The
second basic difference is that when using IET, the
statistician specifies the proportion of data points to

be included within the ellipsoidal "window" whose location,

shape, and orientation the algorithm computes. Of course,
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k-means lets the proportions vary according to the results
of its classification scheme. Finally, and by definition,

IET only searches for one cluster at a time, while k-means

tries to locate k clusters simultaneously.

Several important consequences follow from these ;

remarks. Since a k-means cluster can be unbounded, even

if the starting value for a given cluster is very good,
one iteration can actually carry the cluster center far B
away from the true center, if some outlying observation
happens to be newly classified into that cluster. An
outlier can, in essence, take hold of a perfectly good
cluster and, in some cases, ultimately have it all to
itself. 1In the case of k-means 2, a more subtle and, in
some respects, a more disturbing occurrence is possible.
If an outlier or an observation from another population
is misclassified into a cluster, it will tend to increase
the estimate of its scale. perhaps by a considerable amount.

Since 7Z will then be guite "large", Mahalanobis distances

to that cluster will tend to be small; as a result, this

cluster will tend to absorb all of the other clusters.
This latter point brings to mind our earlier comment that
k-means does not allow the statistician to control the

number of data points in a cluster.
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Since IET only looks at observations within a bounded
ellipsoidal region that is forced to contain a certain number
of data points, it is relatively immune to these sorts
of robustness problems. It may be objected that to ask
the statistician to specify p (essentially, the size of
the region) is to ask too much, as he may have no prior

information about the distribution of the sample. But it

i
1
:
A
}

is our view that IET is an exploratory tool (in the sense
that Tukey uses this expression [12]) and it must be used

in an exploratory spirit. One specifies a sequence of p's
and sees what the algorithm doces, that is, where the seguence
of estimates, (;, E), goes; one chooses a new starting value
and a new sequence of p's and observes again. If there is

an ellipsoidal cluster to be found and p is taken to be
sufficiently small (no bigger than the proportion of points

in the cluster), then our experience suggests that IET is

likely to find it. The basic rule of thumb is that if
several different starting points and different segquences
of p's lead to convergence to approximately the same place,
then one should suspect that a cluster has been found. One
should then try increasing p, using the found cluster as a
starting point, to get a feel for how big the cluster might
be - if one increases p from 0.4 to 0.6 without changing

the estimate of location, u, very much, then this finding

falia adbeas
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both reassures us that the cluster is real and provides a
bound on its size. Of course it will then be important

to make plots and perhaps use other devices to make sure
that the sample really does have a mode where we think it
does. One situation to beware of can arise when p is
taken to be bigger than any cluster in the sample and is
best described by the diagram in Figure 2.2. Here, each of
the two clusters, one might imagine, contains 50% of the
observations and p was set at 70%. Of course, given that
one was seeking a cluster with 70% of the data, this result

(the distribution in the box) isn't so bad.

A further important caveat concerns the situation
when [np] 1is very small, for thenwe are likely to obtain
very unreliable results. I1ET may then have points of con-
vergence at many locations of no interest, just because of
the granularity of the distribution at that "window" size
(where by "window" size we just mean the number of observa-
tions inside the ellipsoid). One wants the ellipsoidal
window to be big enough so that when we look through it,

we can distinguish the trend, or signal, from the noise.

Next we will consider several examples soO as to
illustrate a number of the above generalities. First we
review an example on page 195 of Duda and Hart {6]. A

sample, consisting of 8 N(-2,1) and 17 N(2,1) observations
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is to be clustered. We find that k-means 1 converges from
a variety of starting values to two clusters with means
-2.18 and 1.68 (we are assuming that we know that there

are two clusters). This happens to be a perfect clustering,
a result made possible by the fact that the data from the
two distributions happen to be nonoverlapping. We find
that k-means 2 also converges to these two clusters from
"good" starting values like -2,2, but not from vpazg-
starting valueslike -2,7. Here, however, we will not

focus on the relevance of good starting values, but in-

stead on the guestion of robustness against outliers.

Suppose now that one additional observation, at x = 25,
is added to the sample. We set the starting values at -2,2
and apply k-means 1, obtaining the results in Table 2.1.
Obviously, what has happened is that the outlier at x = 25

now has the second cluster all to itself.

Next we apply k-means 2 to the same data. Since we
are working in one dimension we will write ;jz for %j'
Taking the starting values to be the population parameters,
we obtain the successive estimates in Table 2.2. There,
when the variance of cluster 2 becomes large, most points

become "close" to it and "far" from cluster 1, whose

variance gets ever smaller. What we are observing here




-12-

is an inherent instability in the k-means 2 algorithm.

The point of the preceding example is that one
outlier can completely throw off our search for large
clusters. 1In general, data with many outliers will lead
to a k-means clustering which assigns the bulk of the
centrally located data to one cluster and the rest to
however many other clusters there are. Next we examine
a more interesting example and compare the performance of

IET and k-means.

We generate a sample of 300 N(ul, Iz)' 300 N(uz, 12),
300 N(u3,12),andlﬂo N(ul,40012)observationswhere My = (0,0)',
My, = (6, 0)', and uy = (12, 0)', and attempt to cluster it.
When k-means 1 is applied to these data using starting
values (1, 0)', (5, 0)', (14, 0)', it converges to three
clusters whose means are (2.11, 0.30)', (5.80, 0.25)',
(13.13, 0.31)', which is a relatively satisfying result.
Unfortunately, if the three starting values are (-3, 0)',
(2, 0)', (7, 0)', k-mean 1 converges to three clusters
whose means are (-23.48, 3.55), (2.28, 0.19), (l12.21, 0.21)

and the first of the clusters contains only 27 points.

When k-means 2 is applied to the same data, using
the population parameters for the starting values of the

three clusters, the algorithm yields, on the fourth

A aidieNlin o AT Y LN
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iteration, these means and covariances:
3.13 6.87 4.22
0.37 . 4.22 6.03
5.97 j 1073 2 x 1073 )
~0.11 ), \2x10"3 g8 x1073
11.98 ) ( 0.74  -0.17 )
4 ( 0.07/ , \-0.17 0.96

]
" where the three clusters contain 723, 4, and 273

observations, respectively. The third cluster is quite

good but the first cluster has absorbed practically all
of the second one, as well as almost all of the outliers.
On the fifth iteration, the rest of cluster 2 is absorbed
by cluster 1. If the algorithm is allowed to continue,
using only two clusters now, cluster 3 will also be
gradually absorbed by cluster 1. What happens is that
the outer edges of cluster 3 are nibbled away bit by

bit; at each stage its variances are thereby reduced

making all of its remaining points closer to cluster 1.

Suppose now that we undertake a search for these
three clusters, using IET. It would be natural to take

the sample mean and covariance of all of the data as a
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starting value. Then, 3 iterations of IET, with p set

equal to 0.3, lead to the estimates

( 5.94 ) ( 1.08 -0.07 }
-0.05 J , \ -0.07 0.92

which are excellent. If we take u

-~

Z = I, as starting values and set p

(L, 2)' and

"

0.3, then IET com-
putes the sequence of means: (0.31, 0.15)', (0.1, 0.04)°',
(0.05, -0.01)"' and stops with the final covariance

estimate being
0.9 0.02 )
0.02 0.94 /.
When, again, p=0.3 and the starting values are u = (10, 10)°',
I = Iys the sequence of sample means is (9.92, 1.38)°',
(10.95, 0.34)', (11.47, 0.2)', 11.67, 0.12)',

(11.79, 0.09)', (l1.87, 0.13)', (11.90, 0.13)',

(11.92, 0.13)' and the final covariance estimate is
0.98 -o.oe)
-0.06 1.10/ .

In examining the pattern of convergence in the last two

i e
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trials, one is struck by the fact that it is similar to

L G P S L Y

that of geometric convergence, although the rate appears

to gradually change as the stopping point is approached.

s am Vebiice . ..

In the next chapter an asymptotic analysis of IET will

reveal why this phenomenon occurs.

So far p has been set to the "right" value (each
cluster containing 30% of the entire sample with an
additional 10% contamination by outliers). Therefore, one
might worry that our success so far is rather artificial.
So set p=0.2 and take ; = (4, 4)°', % = 12 as starting
values. Then the sequence of means is (4.54, 0.69)°',
(5.32, 0.45)', (5.82, 0.3})', (5.8%, 0.22)', (5.90, 0.13)"',
(5.91, 0.10)', (5.92, 0.10)', (5.93, 0.09)', (5.93, 0.08)'.
In general, setting p at too small a value will not be
damaging, and we see in the preceding trial that the rate

of convergence was not even substantially affected by the

fact that p was only 2/3 of the true value for the

cluster being sought.

On the other hand, when p 1is bigger than the

proportion of points in the cluster, it is possible to

encounter difficulties. For instance, if we again work
with the same data, set p = 0.5 and use the sample mean
and covariance of all the observations as starting values,

after 1l iterations IET converges to a cluster with mean
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and covariance:
3.00 \ 9.93 -0.29
0.09 ’ -0.20 0.48 /.
Furthermore, upon examining the 500 points included in
this final cluster, we learn that 251 are from the
N ((0, 0)°', 12) distribution, 246 are from the
N ({6, 0O)°', IZ) distribution, and the other 3 are outliers

(from the N ((0, 0)°', 40012) distribution). This cluster

is described in Figure 2.3.

We do not claim that the remarks we have made about
k-means are novel and indeed it may be objected that some
k-means algorithms currently in use have already been
immunized against at least some of our criticisms. For
instance, by allowing the introduction of a new cluster
when an observation is "too far” from all of the current
clusters, we can prevent outliers from taking hold of
large clusters and pulling them far away £from the bulk of
the data. It may even be possible, through the use of
other ad hoc addenda to the k-means algorithm, to eliminate
the instability in k-means 2. Maronna and Jacovkis [10]
compare several different variable metric clustering

methods, (including k-means 2 with one observation

T .
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reclassified per iteration and conclude, after noting the
instability we have pointed out, that the only such

method they would recommend is that same k-means 2 but
with the covariances normalized by the requirement 'Ej' = 1.
This method has the weakness that it does not really allow
for the possibility that different clusters may have quite
different scales. Another approach would be to estimate
the covariance using only the central portion of a cluster.
(One might then use the methods of chapter 5 to "scale up"
those estimates.) Our purpose in discussing k-means has
been to highlight the basic differences between it and

IET, which is a natural competitor. No doubt experienced
users of either algorithm will be able to successfully

cluster a sample with genuine ellipsoidal clusters.

Of course IET does not need to be "patched up"; its
simplest, most fundamental form is already, in a certain
sense, robust. An important dividend is that the form of
IET that we propose to use in practice (and have illustrated
in this chapter) is sufficiently simple for it to admit
fruitful asymptotic analysis, a task which we undertake

in the next chapter.
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Chapter 3 - Asymptotics

In this chapter we study the asymptotic behavior of
IET when there is only one cluster to be found and there
are no outliers. The word "asymptotic" is used here in
two different senses: we imagine that (1) the sample size
is large or infinite and/or (2) that certain parameters
describing the algorithm approach limiting values. The
first part of the chapter will be concerned with zero
order asymptotics, which is to say, how the expectations
of certain guantities behave (or, alternatively, how
infinite samples behave). Later we shall obtain a first
order asymptotic result: the large sample distribution of

what we shall call the staticonary point of IET.

It will be helpful to introduce some notation at this

point. We suppose that £(x) denotes a spherically

symmetric density about x = 0 in k dimensions, that is,

f(x) = c;lg([xlz), where Cx is the normalizing constant

k
and [x§2 = ) xi, and F(x) is the corresponding cumu-
i=1

lative distribution function (cdf). Furthermore, T = X'X

has the generalized chi-squared distribution with k degrees

of freedom with density fk' given in (Al.l), and cdf Fk'

We shall also speak of the ellipsoidal distributions
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1
/2X has an

generated from £ : if X ~ £, then Y = u + A
ellipsoidal distribution if A is symmetric and positive

definite. We assume that g has the property that the

necessary moments exist, Hence E(Y) = u, and the co-
variance of Y, as shown in appendix 1, is I = (2nck)-lck*2A.
Two examples we shall refer to are the spherical normal
with density f£f(x) = c;lg(x'x), where ¢, = (2m) %% ana
g(t) = exp(- t/2), and the multivariate normal, which is

the corresponding ellipsoidal distribution. (In this

case [Z = A). Numerous properties of symmetric and normal

densities are collected in Appendices 1 and 2.

We shall denote the sphere of radius a centered

at § by Sa(S) = {x:{x=-3)"(x~- 5)§_a2}. If we define
(3.1) P (&) =] £ (x)dx,

S_(§)

a
and
(3.2) e_(3) = { xf (x)dx,

a .
S, (%)

then the conditional mean of X 1is

O

4 (8)
(3)

o

(3.3) ua(d) = = E(X X ¢ Sa(S)).

‘g
A1)

! e
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When the sample size is large and k = 1, ua(é) is the

E approximate result of one iteration of IET when ¢ 1is the
; starting ;.

The first problem we shall consider is the following:
) under what conditions will one iteration of IET improve

?i the estimate of the mean of the distribution no matter

|
*‘ what the starting value is, when k = 1 ?

- Theorem 3.1: In the univariate case, when a > 0 and

{8{ > o0,
Fc i F& -
(3.4) Ju (&)} < |8) iff 0 < ———= < 2F
| where

Ea = %(F(6+a) + P(S-a}),

_ 1 P5+a
Fc =334 Fix)dx ,
d~a
and
_ 1 f5+a
fc = 33 ﬁ-a £({x)dx.




Proof: Observe that

t t

/ x£(x)dx = tF(t) ~ sF(s) - [ F(x)dx
S
and
t
[ £(x)dx = F(t) - F(s).
S

Therefore, putting s = 8-a, t = 8§+a, we have

§+a
(8+a)F(8+a) - (8-a)F(8-a) - [/ F(x)dx
§-a

Hy (8) = F(8+a) = F (-2

which implies

F - F
Ha(8) =8 - _ELT:_JQ .
£
c

If § >0, then f(u (8)| <& irf 0 < F_ - Fy < 26F

Similarly, if & < 0, then |u

0 > Fc - Fd > 25§c. But these results, taken together,

are equivalent to (3.4). B

The proof of this theorem did not rely on the existence

of a density £f£: we could have replaced £ by dF and Ec
S+a

by (2a) 1 [ dF(x). The distribution of F need not be
d-a

symmetric about 0, although we stated Theorem 3.1 that way

. . * o
- adi i la s ohaa e A.__,J.k. ik

haeid,

-
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because of our special concern wtih such distr
in this chapter. Finally, we do not even requ
have mean 0. So the theorem can be applied to

sample (with empirical distribution function F

Next we will investigate the behavior of

¥ § » 0 while

a stays fixed when, again, k =

essence we wish to answer the question of how,

dimension, IET behaves when one iteration is performed and

we are near the true mean.

Theorem 3.2: In the univariate case, if £

n)'

is continuous

ibutions
ire that F

a finite

ua(ﬁ) as

1. 1In

- -n‘m P

in one

in a neighborhood of x = a, then if F(a) > 1/2,
_ af(a) N

(3.5) ua(ﬁ) = () 1/26 + 0(8) as ¢ 0.

Furthermore, if £ is n-1 times differentiable in a neighbor-

hood of a, then uén)(O) exists, and vanishes when n 1is

even.

Proof: Since ea(O) = 0, it follows that u_(0) = 0. Cbserve
z that e_(0) = af(a) + af(-a) = 2af(a) and P_(0) = 2(F(a) - 1/2).
1 Hence,

= = = =~
a P_(0) 22 (0) F(a) - 1/2
! a
I e bt e e kL




t

which implies (3.5). 1In general, the n h derivatives of

and are
Pa n e,

(3.6) p{ (8) = £ (gha) - £ (07D (5
'2 and
%i (3.7) el (8) = (-1 (£ (64a) - £(7"2) (5-a))
&
+ [(5+a) £ P (54a) - (8-2)£PD) (5-ayy.
Since £ 1is symmetric about x = 0, f(n)(x) = (—l)nf(n)(—x).

Hence, (3.6) and (3.7) imply that

El
: 0 n odd
! (3.8) p(™ =z p{(g) = (n-1)
: 2f (a) n even
3 and
- (n-2) . {(n=-1)
i2(n-1)£f (a)+2af (a) n odd
(3.9) () = (r) gy o]
E < L 0 n even.
3
ﬁ Let u(n) = u;n)(O). Then, since e = P_u_,
n
f (3.10) e = 7 (M), (am9)
j k=0
Now we use an induction argument to prove u(2n) 0 of

I e o T T

v Saataniien L

SRR SRR

LI I )

AN

SO0
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course %) = 0. suppose u'® =02 o - 20"l

and consider the (2n+l)St instance of (3.10). Then,

3]

n

e(2n) - Z (i?)P(k)u(Zn k).
k=0

Observe that all terms with k odd vanish becavse of (3.8).

Similarly, for k > 0 and k even, the corresponding

terms vanish by the induction hypothesis. Hence,

(20) _ 5(0) (20) Lo (2n)

u(2n) =0. R

=0 by (3.9) and »'? > o;

hence

If we put

e mare e v el E L RES

. __af(a) _
then the preceding theorem asserts thnat ua(d) = b(a)s + ©(§),

or that for ¢ small, bfa) represents the proportiocnal
reduction in bias achieved by performing one iteration of

IET. It is interesting that b(a) has a simple geometrical
intervretation as the ratio of the density £ at the boundary

of [-a, a] to the average density of £ in [-a, a],

f(a)
==(2(F(a) - 1/2))

(3.11) b(a) =

It turns out that b(a) 1is the k=1 version of bk(a),
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the k-dimensional bias reducing function that appears in

the next theorem (that is, b(a) = bl(a)). We define

c;lg(az)
(3.12) bk(a) = 5
Fk(a )/Vk(a)
where
k/2
V(a) = ———a
1"(-2- + 1)

is the volume of a k-dimensional sphere of radius a, given
in (Al.5). The function by (a) 1is the ratio of the density
of X on the boundary of Sa(O) to the average density

of X inside S_(0). (Of course, F,(a®) = Pr(x'x < a?).)

In the k-dimensional case, the arproximate result of one

iteration of IET is not quite given by ua(ﬁ) because it depends not

only on & but also on the initial estimate of the covariance

matrix. Nevertheless the behavior of ua(S) expressed in

Theorem 3.3 is relevant to our understanding of IET.

b Theorem 3.3: If g is differentiable in a neighborhood
of az, then

—_—

(3.13) ua(S) = bk(a)6 + o(8§) as § - 0.
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Proof; By (3.2), e, (8) = / xc;lg(x'x)dx. We change
Sa(6)
variables by setting y = x-§ and obtain

¥.3 SROVRPY

(3.14) e (6) = [  (y+8)c laly'y + 2y's + §'6)ay.

s, (0)

e R

s

Expanding ea(d) we find, to first order, that

LUt AN Fad SELb L

(3.15) ey = 1f o tg(y'y)dyls
5,(0)

a

o

i + (2] YY'Cilg'(Y'y)dy]G + 9(8)

§,(0)

i

by using the spherical symmetry of g(y'y). But the first
term of (3.15) is just Fk(az)é and the second term is

o 2M35 by (aAl.13) and spherical symmetry. Substituting

(Al.19) for M3, we find that

cC
e (8) = (J; k+2, 7¢

2., &
27 Cp k+2(a ))s.

Furthermore, Pa(i) = Pa(O) + ©(1l): hence,

2
2F (a®)

N 1 Sk+2, “Fk+2 .

(3.16) v,,a(b‘) = (-Z—T-r- ck ) Pa(o) 3.

Using (Al.1l) and (Al.5) it is easily verified that (3.16)

is equivalent to (3.13). R




T
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Two useful alternative formulas for bk(a) are given

in (Al.3) and (Al.4) and some numerical values are presented

in Table A2.1 when X N(O,Ik). In that table we write

p = Fk(az) for the probability of lying in Sa(O); alterna-
tively, a = (F;l(p))l/z. It is interesting to study
bk((F;l(p))l/Z) for fixed p as k 1increases. For

fixed p, F;l(p) increases with k; therefore, by Lemma A2.1,

bk decreases with k. For k large, in fact, by (A2.14),

by = o(k-l/z) as k + » when p is fixed. To summarize,
for a given p, in high dimensional space, IET will converge
faster than in a low dimensional space. This fact is, at
first glance at least, rather surprising and indeed it depends
on the sample size being sufficiently large, where what

constitutes "large" may itself grow with k.

Later in this chapter we shall prove a generalization

of the preceding theorem Theorem 3.6, which will imply

that b, is still the bias reduction factor when one computes the

k
expectation of X, given that it lies in an off center ellipsoid.

It is natural, now that we have studied the zero
order asymptotics as § - 0, to undertake the analogous
investigation as § - ». Two formulations of this problem
are relevant. We can, first of all, let the radius a be

fixed and send § + =, thereby forcing the probability in
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the spheres, Pa(G) to go to 0. Alternatively, we
can fix Pa(d) = p; then, as § » =, a must also
approach «. Theorem 3.4 deals with the first alternative
while Theorem 3.5 deals with the second. Neither result
is as general as it could be, but both provide some in-

sight into the operation of IET.

Theorem 3.4: Suppose X vV N(O,Ik). Then,
(3.17) lim |(u_(8)-d| = 0
§ +» = a

where d is the point in Sa(d) closest to 0.

In order to prove this result we must make use of a
rather technical lemma, the proof of which will follow

later. Note that d = d(§) and let

(3.18) Té(é) = {x : x ¢ sa(a) and |x| <id(8) + et
and
(3.19) U_(8) = S_(8) = T_(3)

[\
4]
o

We shall also abbreviate Sa(S) as SS’

Lemma 3.1: Suppose X v N(0,I,). Then,

k
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P(T_(8))
> 1l as § » = Y ¢ > o0.

(3.20) e - waling
P(SG) —

and

(3.21) sup |x-d| > 0 as € + 0 uniformly in §
xeT _ (8) —"
€

Theorem 3.4 asserts that the conditional expectation
of X ~n N(O,Ik) given that X ¢ 86 approaches the point
of maximum density in the sphere, namely d, as the SG'S
move out to «, The two pieces of information in Lemma 3.1

are that as ¢§ + =, more and more of the probability in Ss

is actually contained in a small subset, TE(G), of 56’

and that every point in Te(G) is very close to d When

€ 1is small.

Proof of Theorem 3.4: We may write

/ xf(x)dx + f xf(x)dx
T_(4) Ue(ﬁ)

£

B(T_(5)) + P(U_(3))

(3.22) ua(S)

BT, (8) P(Sg)

) 3 '
P(S;) P(TE(O))

f we set ¢ = P(UE(S))/P(TE(5)) = (1 -

then by Lemma 3.1, cs 0 as 4§ = », It is possible to
rewrite (3.22) as

. -1 ‘s
(3.23) u,(8) = ;F—E(X[X e T_(8)) +
5 3

l+ch(xix s U_(3))
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which implies that
(3.24) ua(é) - E(X|X ¢ TE(S)) =
s
T;EE(E(X|X € ue(s)) - E(X|X € TE(G))).

Since both E(X|X ¢ U_($)) and E(X|X ¢ T.(8)) lie in
SS (a consequence of the convexity of 55)r it follows
that they can be no farther apart than 2a. Hence (3.24))
implies that

s
l+c(S

(3.25)  [u_ (&) - E(X[X e T_(8))] < (a) ~ 0 as 8§ » =
Now E(X|X ¢ TE(G)) € T _(8§) since TE(S) is convex.

o
Fix n > 0 and choose ¢ > 0 so small that for all §

sup |x-d| < n/2, which we can do as a result of Lemma 3.1.
xeT _(38)

Then it follows that

(3.26) (XX £ T_(3)) -4l <3

Next choose A such that ({é! > A implies that

(3.27) uy (3) = E(X(X 2 T_(3)) 0 < %,

. m;-m_ali

ki,
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which we can do as a result of (3.25). Combining (3.26)

and (3.27) we obtain the result that |é] > A implies

fu_(8)=-d| < n, which is what we desired to prove. B
a

Proof of Lemma 3.1: Without loss of generality we may

assume that & 1lies on the positive 3 axis and that

|§] > 2a. Then we may write d = §-a, using the convention that

§ (or d) can mean either the vector or its length

(equivalently, its X component) , depending on the

context. Equation (3.21) is geometrically obvious, so 1
we shall only prove (3.20). Let V(§,e) be the volume of

TE(G) and observe that

(3.28) P(T€(5))

v

P(T, 5 (8))

K
(2m)” /2exp (- %(am/z)z)vw,i)

[ R T LA 15T T

| v

and

RS 2
(3.29) P(C_(3)) Z (2m)

/2exp (- %(d+€) )Vk(a>

where V, (a), the volume of Sy is given in (Al.5).

It is easy to show that a sphere with radius ¢,/4 centered

at d+:/2 1is contained in T:(S). It then follows that

- ~ \
-;-“ - . < "y - . - paado?s  Log i’ 1. e aal . vy ¥ WSy Ty
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(3.30) V(8,8) 2 v (e/4) = 0(N)

Using (3.28), (3.29), and (3.30) we may now prove (3.20):

P(Ue(d)) exp [- %(d-+s)2lvk(a)
P(T_(3))

0 < Y 7
exp (- 3(d+¢/2)21v(s,e/2)

1 3 2., Vkfa)
< exp [- 7(de + e )16;72757 +0 as 6 » =

since 4 - » ag § + x, B

The next theorem shows what happens in the one
dimensional case when the Sa(é)'s go out to infinity
in such a way that the probability they contain goes to
a limit which is non-zero. We shall write ¢(x) and ¢(x)

for the N(0,1) density and cdf, respectively.

Theorem 3.5: Suppose X Vv N(0,1). Then if Pa(S) > p

as % - » for some p such that 0 < p < 1, it follows

that
(37% 01
{ - )
(3.31) I
Proocf: Since £ - », H{(i+a) - 1. Hence, d(3-a) - 1l-p,
which implies that f-a - b_l(l~p). Of course, §+a - »,

Therafore, as § -~ »

. . e v
s sttt i i pnn e A e DU PP

- A
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f x¢ (x)dx
e (6) -1
_ ¢ “(l-p)
(3.32) L_(8) = == >
a Pa(G) P

[+ -3

But since [ x¢(x)dx = ¢(c), we conclude that
c

1

L (8) = p re(e T (1-p)). B

We may approximate the limiting conditional expectation

of X in (3.31) in a simple fashion. In Woodroofe (13, p.

it is shown that if x > 0,

2)

< (1 + X

¢ (%) -
" (1 ®(x)).

(3.33) 1 - 8(x) <

By setting Xx = ®-l(l-p) and applying (3.33) it is easy

to derive that if p < 1/2,

-1 _

(3.34) 0 < 22 Ul _ o7 p) < .
P % " (l-p)
-1 -1 -1

Yence, as o » 0, p “b(® T (l-p)) - ¥ (1-p) = 0. Some
~umerical results are exhibited in Table 3.1. Observe
that when p = 0.8, one iteration of IET using the worst
possible starting value will still lead to an estimate
with exgectation 0.35. Of course this comment is based
on the assumption that the cbservations are from a uni-

vvariate normal distributicn.

97])
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The rest of this chapter is devoted to an analysis
of the first order asymptotics of IET; more particularly,
we shall be interested in obtaining the asymptot‘c distribu- |

tion of what we shall call the stationary point of this algor-

ithm. Let % = (b,v,B) be the parameter specifving the ellip-
soid.

* _ in-l 2 3
(3.35) E (¢) = {y : (y=v)'B “(y-v) <b"} 4

where b is a scalar, v 1is a k-vector, and B is a symmetric 5

positive definite k x k matrix with trB = k. We can represent
~ * ~
the operation of IET as a sequence {¢(m)} with E;-= E(ﬁ(m))

and ;(m+l) = Tn(é(m)) where the operator Tn is a function

of the sample (of size n) and is defined bv

~(m+1) n
(3.36) ¥ TheT [* y i,
E
m
f (y_v(m+l))( ~(m+l))'dH
* n
g
s {m+1)
{(3.37) B w -
k ltrj (V—J(m+l))(y-J(m+l))dHn
*
m
and 5(m+l) is the smallaest value 0f b for which
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where Hn is the empirical cdf of Y = y + Al/zx, which

has an ellipsoidal distribution with mean u and

covariance %I = (2vck)-lck+2A. We define the "true ¢" to
be b, = (bo,vo,BO) where Vg = u, By = kY/(tr Z), and

*
bO is determined implicitly by Pr (Y ¢ E (¢0)) = p.

Definition 3.1: A local stationary point is a segquence

of random points ¢n = (bn,vn,Bn) such that
~ _1/2
¢, " 99 = Op(n )  and satisfying
(3.39) 3. =T (3) + o (n'l/z)
: n n'%n P :

We shall say that there is an essentially unique local

-~ ~

stationary point if whenever o and LI are local
1
stationary points, oy ¢n = Op(n /2).

Because of the invariance of IET it will only be
necessary to consider the special case where the distri-
bution is spherically symmetric (i.e. u =0 and A = Ik)'
It will be convenient to have special notation available

for this situation. Let 2 = (4,4,3) be the parameter

specifying the ellipsoid

(3.40) E(3)

1}
~
»

[}
O
H

~

+
m
“

[

>
-

A
[\
+
pe

—

R AR .A .‘:LL. Coean
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where A 1is a scalar,§ 1s a k-vector, and ¢ 1is a

symmetric k x k matrix with tr ¢ = 0. Here the "true 3"
is just 90 = (0,0,0) and ag = F;l(p). In this case,

the random variable in question is X and £, F, and Fn

are respectively its density, cdf, and empirical cdf.

Our next theorem, a generalization of Theorem 3.3,
will play a crucial role in the derivation of the
asymptotic distribution of what will turn out to be the

essentially unigque local stationary point. We define

k
2 2 2

(3.41) J8|“ =+ ] 8T+ 7 ) ei..

=1 1 i=1 4=1 )

Theorem 3.6: If g 1is differentiable in a neighborhocod of

2
0’

a%, then as 1|8 - 0,

2
(3.42) [ £(x)dx = F_(a2) + 2a £, (al)r + o0 (]3])

k+2

(

)(2fk+2

~—
~—
O,
+
¢}
—
1
~—
c =R T S AP

Vi)
3
o}

'
1
i
!




c
. - k+2
/ xx'f(x)dx = (2TTck

E(8)

(3.44) 123 (a )I

k+2

Cx+2

(chk

+

2
) (2apf, o (ag) Ty A

Ck+4

+o(—
(2~.r)2ck

) (2 (a Y)e +o(]8]).

k+4
We shall find it useful to derive a lemma before embarking
upon the proof of this result. Set a = ag + A and

k

suppose that h 1is a vector valued function defined on R.

We shall write Dh(x) for the derivative matrix of h

Lemma 3.2: If h 1is differentiable, as |(6,e)}| ~ C,

(3.45) [ h(x)f(x)dx = A + B + C +o(]| (§,e)1])

E(0)
where
-1 ,

{3.46) A = h(x)ck g(x'x)dx

x’xia2
(3.47) B =/ [Dh(x)] (sx/2 + o)c g(x'x)dx

2

X'Xia
and
(3.48) C = f h(x) (x'zx + 2x'3)c Tg' (x'x) dx.

<< 2
X<a

. ¢ ih. . .
i i ek T TCUDRN RS PO VLSRN it ab ckih ke e sen .

I
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Proof of Lemma 3.2: We change variables by setting

)T /2

1
y = (I, + ¢ x - 48), where (I, + £) 72 is chosen
to be symmetric. Then, the range of integration in (3.45)
is the sphere {y : y'y < az}. Since tr (eg) = 0, the

Jacobian determinant is

(3.49) =1 +o(le})

Furthermore,

(3.50) x = (I, +¢e/2)y + & + o(lel)

and

(3.51) x'x = y'y + y'ey + 2y'S + o(](3,e) ).

Now, by recalling that £(x) = c;lg(x‘x); substituting
(3.49), (3.50), and (3.51) in the left hand side of (3.45);
expanding h and g about y and v'y, respectively;

and keeping only those terms which are zero or £irst order

in (3,c), we obtain the lemma. B

Proof of Theocrem 3.6: To derive (3.42), (3.43) and (3.44)

we simply apply Lemma 3.2 with hi(x) set equal to 1, x,

and xixj, respectively. The £final step is to expandé the
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results thereby obtained (as functions of a) around a,-
In all cases we shall make heavy use of spherical symmetry

and Lemma Al.l. For convenience we shall write S for

the region of integration {x : x'x < az}. When h = 1,

we find that A = Fk(az) and since Dh

0, B = 0.

Observe that the formula for C may be simplified to
= 2 -1 _,,.,
C (é X1 9" (x'x)) (Ze g4,

which implies that C = 0 since tr (g) = 0.

Equation (3.42) then follows from

[, foa = Fy ((ag¥) ) + o(] (8,80 ).

When h(x) = x, it is obvious that A = 0. Since Dh(x) = Ik'
we obtain immediately that B = Fk(az)d. The equation for C
is

(x'x)dx,

C = f(xx'zsx + 2xx’6)c;lg'
S )

but, by spherical symmetry, the integral of xx'axc;lg'(x'x)
vanishes and the integral of the remaining term reduces

to

2
1

(3.52) c=1[f x
S

c;lg'(x'x)dx](ZS).
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As a result of (Al.13) and (Al.19), we may write (3.52) as

k+2 2 2
c [(ZWC £22) 21, ,(a%) - Fy (a )]a

Therefore, adding A, B, and C we find

[ xf(x)dx = k2

(—) (2f (a))<5+o(l(5,c) )
E(8) 2nc k+2 l

from which equation (3.43) may be derived by expanding
around agy- Finally we shall obtain (3.44) bv considering
two cases: h(x) = xixj for i < j and for i = j.
First, when i < j, it is easy to see that A = 0. We
find that when we drop terms that vanish because of
spherical symmetry and the form of Dh (Dh has xj as E
its ith coordinate and X; as its jth coordinate, with

the other coordinates equal to 0),

_ 2. 2 -1 '
(3.53) B = é(l/Z)(xj;ij + xisji)ck g(x'x)dx .
3y the svmmetry of = and (Al.8) and (Al.l7), egquation (3.33)
leads tco
(3.54 B = (27c,) 1 F (az):
! k+2 k+2 i3

Aga.n xeeping only nonvanishing terms, we find
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. 2.2 -1, .
cC = é xixj(sij + eji)ck g'(x'x)dx,
which simplifies to
Ch+q 2 Cr42 Fk+2(a2)

¥ (2m) %, X

upon the application of (Al.l6) and (Al.20}. But then,

using (3.54) and (3.55) we derive

Cx+4 2
o (3.56) [ x;x;E(x)dx = (—=5—) (2f, (")) ey for § < 3.

E(8) (2m) )
Taking the next case, i = J, or equivalently hi(x) = xi, :
we find 1
c ]
= (K2 2 4
A= (375 JFpyp(ah) ]
k
and
c
_ k+2 2, .
B = (21ck)Fk+2(a ):ll
by making use of (Al1.8) and (Al.l7). Dropping terms that
1 vanish we may write
y k
c =/ xi( Z x%all)cklg'(x'x)dx.
] =1 °




Then, using Mys defined in (Al1.20), and equations (Al.15)

and (Al.16),

C= (3Mde., + M (] e,0)
271
But since tr £ = 0, it follows that Z_ €gg = ~ eli; hence,
2#1
Cx+4 2 Cx+2 Fk+2(az)
C = 2l Ey g (@7 = () = 1ey;
{2m) "¢ k

k

Therefore, summing A, B, and C we find

(o]

k+2 Cx+4

2 _ 2 2
(3.57) f x;E(X)dx = (F750)Fy 0 (@%) + (———5—) (2f,  ,(@%))e, ;.

E(9) k (2m) “cp

Combining (3.56) and(3.57) we obtain

c c
k+2 2 k+4 2
xx'f(x)dx = (=5)F (a”) 1, + (—m—s—) (2£ (a®))e
é(a) 2ch k+2 k (Zﬂ)ch k+4

from which (3.44) follows upon expanding around a,: ]

It is easy to see that as a result of (3.42) and

(3.43) and the formula for bk(a) given in (Al.4),

Using (3.42) and (3.44), we obtain in a similar way that

- it Lo . < A 1 i e R o M J

[
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2
ck+2)Fk+2(a0)
27me 2

k Fk(ao)

E((X-8) (X=8)"'|X ¢ E(8)) = ¢ + 0(|3])

Iy

which we may rewrite as

. _ Cx+2
(3.59) E[(X-8) (X=6)'|X € E(8)] = c(k,p)5 =T, + o(l8])
k

Cr+2

2Trck

the covariance matrix of X.) It is a simple matter to

where c(k,p) = Fk+2(F;l(p))/p. (Note that I, is

extend (3.58) and (3.59) to their ellipsoidal generalizations:

(3.60) E[Y|Y € E'(9)] = u + by (ag) (v=u) + o([¢=5)
and
(3.61) E[(¥=v) (¥=v)'|¥ ¢ E (9)] = c(k,p)Z + O(|4 - 01).

At the end of Appendix ) it is shown that c¢(k,p)Z is the
covariance of the truncated ellipsoidal distribution, so
(3.61) reassures us that when o is near 297 the exrected
value of 2 generated by IET will be clocse to the true
truncated covariance. According to (3.60), the bias
reduction factor plays the same role in the ellipsoidal
case that it played in Theorems 3.2 and 3.3, which is

another reassuring result. It is straightforward to write

o amamd e Aas
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down the first order terms in the expansion of the left
hand side of (3.61). There is a term in b-bo and a term
in B—BO; the corresponding coefficients play the same
sort of role that bk(ao) does in the location case in
telling us how one iteration of IET will reduce the bias

in the covariance estimate, on the average.

Our next result concerns the uniformity of convergence
of linear functionals of the empirical distribution function
Fn on all ellipsoids E(8) such that 3 1is sufficiently

close to 0. Note that |B|, for a matrix B = (bij)’ will

denote (I I sz)l/z. Recall that 6 = (A,8,c) where
ij
tr (¢) = 0.

Lemma 3.3 - (Uniformity): Suppose F 1is a cdf on Rk

with a bounded density and Fo is the corresponding

empirical cdf. Let

1
(3.62) vn =12 ; 's < gn” /2-+b}
and
(3.63) D (3) = [ h(x)(dF_-dF) - |  h(x) -
J / r (dF -di‘ .
E(T) n JE(O) n )

Then there exists a £ -0 such that for anv K> 0 and anry

ccunded scalar, vectecr, or matrix valued n

’

Y i i ,I .
. e o b, Laia PP} e e A, A
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| -2
(3.64) sup |D_(9)]| = o_(n )
9 € Vn n P

Proof: It will suffice to show (3.64) for scalar valued h.
1
First we cover Vo with balls of radius p = n /2 a’
m
so that V_ & 1=u1 S,(8;), where s (8;) = {o : [8=8,] < o}.

We will need m balls where

1
n~ /2*Db nk*(a+b)

m Kl( ) = K

=10
n /2-a
*
and Kk is the dimension of the 6 space, that is
*
k =1+ k + k(k+l)/2 - 1 = k(k+3)/2
If § ¢ so(ei), then

E(%)AE(ei) < R(Siro)

where R(ei,o) is a spherical shell in x-space with thick-

ness bounded by K,3. Hence, if 2 ¢ S.(fi)'
' - N ! ' )
D _(3)-D_(3.)} < f lh(x)ldaF_ + [ ‘h(x)'gF.
" S R(3,,9) ORG,Y)
’

s
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But [ th(x)|dF < Ky f dF < K,» and
R(3, 2) R(3. p)
i, i,
f h(x) dF < K, / dF < Ko + Ks(o/n)l/zz
R(2, 9) R(3, 0)

where 2 1is a random variable with mean 0 and variance 1.

Hence,

sup D, (3) - b 3] < Kglo + (o) 2z,

Gesp(ei)

Since Pr (|z] > a1 < n2, by Chebyshev's inequality we

may concluda that

(3.65) Pr ( sup D (3) - D (5,)] > K (o+ (o/m 7 %n7)

n' i
eesp(si)
Since Dn(ai) has expectation 0,
Var D (2;) £ n~t [ h? (x)aF < K7n‘l;ei]. Hence,
E(ei)AE(O)
-1 -1 23
n ln /2+b - Kgn /2+Db for

Var D (3;) < Kg

i=1.,...,m. But then, by Chebychev's ineguality,

1 1
(3.66) Pr (/D (2;)' > Kn /2-a, < Rgn /2+2a+b

where a > 0. We are interested in showing that for some




! 1
-l/Z—a i
(3.67) Pr (sup {Dn(e)l > Kn )y =o(l).
9eV
n
Now the left hand side of (3.67) may be bounded by _
4
m 1 .
J pr ( sup [ (9)] > kn” /7 %) . In addition,
i=] 3eS _(3.)
P11 ;
1 i
- - 4
= /2-a
(3.68) Pr ( sup ID_(8)] > Kn ) < P,. + P_, -
n - 11 21
8¢S _(9.) ]
o 1l
| where P, is the left hand side of (3.66) and ?
4
| 4
—1/2-a
(3.69) P,, = Pr ( sup ID_(8) - D_(8.)| > Kn )
1 n n bR
3eS _(3;)
071 i
But if we choose n such that
1 1 -1,
Kglo + 2 /2y /24 L < Kn /2 2,
i.e. if we take n = Klon(a/z)-(l/4), then equation (3.65)
implies
a=-(1/2)
(3.70) Pri S ¥qD .
| 3ut now, combining (3.65), (3.56), and (3.70) we obtain
T k™ (a+b)  _-(1/2)+b+2a__a-(1/2
(3.7 T (py, + By < Rp,nt (3R H2a,  amil/2),

T e ettt o e b s i o J
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If we take a = b = (4(k +2)) l, then the right hand side
of (3.71) goes to 0 as n -+ «, which implies (3.67),

which 1s equivalent to (3.64), the desired result. | |

It is interesting to note that the a and b we needed

in the preceding proof were quite small, that is

1

& =b = s RkF)

We are now ready to derive the asymptotic distribution

of the local stationary point @n when Y has an ellipsoidal

density.

Theorem 3.7: There is an essentially unique local stationary
v ). nl/z(' =34)

(D

peint = (b v B n -~ i
°n (B¢ Vpr By as ! n” %)’ 2
asymptotically rormal. 1In rarticular,
1/2 = c(k,p)
(3.72) L2 E_~w -+ N, : 57)
p(l-ok(ao))
Proof: t is enouch to prove the theorem in the spherically
symmetric case where the true density is Z£(x). The invariance
cf IET leads te the more general resuliz. DYNote that in +the
stherically symmetric situation we shail studv in %his proct,
= (bn’ Y Bn) is simply related to
B I ~ ~2 > 2 -
z - . 3 = joN ) = + p = 3 and
n Car Par ) BY ®a (ay nl n nr 3n¢
~ * ~
- -~ P $ N - T \
n = Iy * Z,r when we require & (3 ) = E(: )
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Then, as a result of (3.39) and the uniformity lemma,

(Lemma 3.3),

1
/2y

(3.73) & = pl [ xar_ +p t ] xdF - p 1 [ xdF + o_(n
n . P
E(0) E ) E(0)

n

‘ If we write 1(E) for the indicator function of the event E,
t' and let

1

(3.74) Wy = n "IX;1(X; € E(0)) = [ xdF

E(0)y O

then upon making use of equations (3.43) of Theorem 3.6

and (Al.4) we find that (3.73) may be rewritten as

w 1

~ = 1 -7/
(3.75) S, o - bk(ao)) + Op(n

2).

Now, equation (3.75) gives an explicit formula for 5n

We may apply the central limit theorem to W1 and obtain,

as a consequence, the asymptotic distribution of Sn.

Because of (Al.8) and (Al.l17)

. 1/2 “k+2 2
(3.76) L(n™" W) = N(0, (§§E:>Fk+2(ao)1k)

Using the definition of <c(k,p) 1in (Al.23), and the

1/2

transformation Y = u + A X, (3.76) immediately leads
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to (3.72). In a similar fashion we may obtain explicit

~ ~

formulas for X, and <, analogous to (3.75), by making

use of uniformity and (3.42) and (3.44) together with

(3.39). So if we let W, = n-lZl(Xi e E(0)), then

p-W _1
n ’—_"——%— *opn 5.
2a0fk(a0)

>
I

(3.77)

Since L(nl/z(w2 - p)) = N(0, p(l-p)), it follows that

L3 » w0, —RUzRL__)
(2ay%, (a2))

We can also obtain an explicit formula for e, as a function

_ -1 ! N
of Wy =n Exixil(xi e E(0)) and kn'
~ D '1/2
(3.78) Ik + E‘.n = S + o (n )
k “tr (D) P
where
= w, + (27c,) Yo, (2a.5, (a2))T N
D= W, Cy Cppp (2355 (ag i
}
‘ 2 -1 - 2.,

By computing tr (D), which would depend on in and W3

but not on I We could use (3.78) to derive an explicit




Again, nl/zgn will have an asymptotically

M

formula for .

normal distribution but with a very messy formula for its
covariance. (In Appendix 1, Lemma Al.l provides the
formulas which would be needed to actually compute that

E covariance matrix.) From what we have shown so far, it

-~

follows that 5n itself, and hence ¢ , 1s asymptotically
n

normal. We have seen that if &n is a local stationary

F point, then 9n must satisfy (3.75), (3.77), and (3.78).

But since those three equations themselves yield an explicit

~ -~

formula for 6n such that the corresponding ¢, satisfies

E (3.39), we have proved the theorem. B

We conjecture that if IET is allowed to iterate until

it reaches a stopping point, that is, until for some m

0!
. (my) . (mg)
) = Tn(¢ ), then first, there will be such an mg
(with probability approaching one) and second, this stopping point

1
will be in a Oo(n /2)

=

neighborhood of the local stationary

point whose asymptotic distribution we have just derived.

If our conjecture is true, then we have just obtained the

asymptotic distribution of the stopping point of IZT. Were

we to prove that IET does halt with probability approaching L, it would

then be enough to show that there can be no stationary

Doint Sq such that LI N is bigger in order o:Z
1
. . -2 : . S
magnitude than o0 _(n ), since a stopping point s

e e e L e e e




certainly a stationary point.

It is interesting to note that if Y ~ N(u,Z)

the result in Theorem 3.7 becomes

1

172 =~ _ N 1
LS 0,m0) + N0, Sy )

since c(k,p) =1 - bk(ao) for this distribution.

then




Chapter 4
Monte Carlo Analysis

In this chapter we will be concerned with the gquestion
of how the presence of outliers and/or a small (infrequent)
subpopulation influences the performance of IET when it
is used to estimate the mean of the larger (more common)
population present in the sample. More specifically,
we shall, in each case considered here, generate a random

sample composed of three kinds of data:

1 N(ul, Zl) observations

n, N(uz, 22) observations

and

n N(ul, czIk) observations

where Ny, n, << nl and 02 >> 1. Then we shall use IET,

as defined in Chapter 1 to estimate dye

Given this setup, how shall we study the performance
of IET? There are a considerable number of parameters
which must be specified, some involving the algorithm
and the others involving the simulated data, before the
above process is well defined. To specify IET, one must

select starting values for the mean and covariance as well

A . bl T, 0 . i ke st o s
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as a sequence of proportions or p's, while, on the other

hand, before generating the data one must choose

2 . . .
Wye Wgs Zys Zys 07, ny. Ny, ng, and, implicitly, the

dimensionality k, of the problem. Presumably our study
should consist of setting these parameters at a sufficiently
large number of values to encompass the range of possibili-
ties likely to be encountered in practice. Unfortunately,
there are too many parameters for such a comprehensive
investigation to be feasible. Therefore we shall content
ourselves with the examination of a relatively small number
of cases, in the hope that we shall still get a feeling

for the important characteristics of the behavior of IET.

To begin our study we now assume, without loss of
generality, that Uy = 0 and that My always lies on the
positive Xq axis. Furthermore we set Zl = ZZ = I, and
always take the starting values for IET to be the observed
mean and covariance of the entire sample, which consists of
n = n; + n, + n, observations. Then, to proceed we need
only choose a single positive number for EPY the dimen-

. . 2
sionality k, 77, Ny, Ny Dy and the sequence of p

First we consider an example. Set k = 3, iy = 5,
n, = 100, n, = 20, n, = 0 and let the sequence of
proportions be 0.5, 0.6, 0.7. The overall mean of the

random sample generated according to these specifications
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is (0.88, 0.05, ~0.06)'. The three successive estimates

of uy; are

(0.06, 0.06, -0.16)"'
(-0.07, 0.05, ~0.08)"

(-0.06, 0.06, ~0.07)"'.

Incidentally, the final correlation matrix is

1 -0.05 0.04
1 0.09
1 .

Though the general behavior of IET in this example is
typical of its behavior in many other examples with similar
parameter settings, it would be nice, nevertheless, to have
some guantitative information about its performance. The

rest of this chapter is devoted to the presentation and

interpretation of this kind of information.

Our procedure is as follows. Generate a random
‘ sample according tc the appropriate parameters. Apply

1’ --rp,n to
. . . (0 -
) cbtain the sequence of estimates u( ), ;(l),... ,u(m),

. ) . . -
where .'%7 is the overall mean, X. Compute and save

IET, using the sequence of proportions p

£ sz

™
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(1) _ ~/2,7 (1) . .
e;” =Kk | u |, where the superscript 1 indicates that
this is the first Monte Carlo trial. Repeat this process
for each of s samples with the same parameter settings.
Report the means and standard errors of the eij)'s in

the form

Of course,

s )
Ei = g7t v eij)
j=1
and
~2 -1°2 -1 1 3 () = .2
a = s = s “(s-1l) ¥ (e;1 - e .
- e, & i i
ei 1 j=1

Now suppose a sample has no contamination,

i.e. ny =ny = 0. Then X "~ N(O,n-lIk). Hence
_ 1,
X' v on ‘(‘"(k) Now let
4.1 om, o= (2K /2 LUk=LI/2)
i x T(k/2)

Then a simple calculation reveals that

i ad




1
=k/2

E(x(k)) my and Var(x(k)) = k(l-mi). It then

follows that, in this case,

1
(4.2) E(eg) = mn” /2
and
(4.3) var(ey) = (1—m§)n'1
1 1
since ey = k /2[§| ~ (nk) /zx(k).

We list some numerical values for m, and l-mi
in Table 4.1. Incidentally, as k -+ =, m. ~ 1 and
i n (2k)"!. These last two facts may be derived by

1
observing that L(k ’2(k lxz(k)-l)) ~ N(0,2) as k + =

l-m

and applying the d-method.

The point of the preceding paragraph was to provide

a benchmark for determining when Ei is big. The best

one can hope to do is to have an average error e,

1
approximately equal to meny /2 if there are ny observa-

tions of the major population (as long as the minor
population isn't too close to the major one). For
example, if n, = 100 and k = 2, then

\
mkn- /2;0,09, Similarly we will expect the estimate

of the standard error J_ to be approximately

e.
1

L . ' : .y - .
e - . s ) s ek s bk e i L-I-‘-*‘““‘ s J
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1, - 3

) /2 2 5 x 107 if s = 100 and if B,

(0.215 < 10~ ¢

is such that about 100 observations were used in computing
the ith estimate u(l) (and if not too many outliers

are included).

Now we are ready to report some results. We shall
describe and interpret 5 simulations, to be referred to
as simulations A, B, C, D, E, whose results are recorded
in Tables 4.2-4.6 at the end of this paper. In simulaticns
= 0,

A, B, and C we will set k = 2, = 100, n, = 10,

™ 3
and s = 100 (= number of samples). These three simulations
differ only in regard to the seguence of proportions used.

In A, Pl =P, =P, =P, =0.5; in B, Pl = 0.5, Pz = 0.6,

Simulations &, B, and C are intended to illustrate
the effect (on IET estimates) of the position of the
subpopulation when there are no outliers (n3 = 0). Un-
fortunately, the standard errors, in parentheses, are
often comparable in size to the differences between

various ei's. (To reduce the standard errors to about
0.001 would require at least 25 times the number of samples
used here: 2500 samples of 110 observations!) Nevertheless

we may derive some general conclusions of interest.

In simulation A, the presence of a subpopulation

causes one to do somewhat worse than one would ctherwise

. * !!I .
e At e an il §
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do. Simulations B and C suggest that the estimation problem
is hardest when the subpopulation is 1 or 2 standard
deviations away. The use of an increasing sequence of
proportions seems to slow down convergence (as compared

to using the biggest P repeatedly), but not to affect

e, very much.

In simulation D we study the effects of having
both outliers and a small subpopulation in the sample.
To simplify the presentation, each run in Table 4.5
will be identified by a parameter vector:

ny, = ng = 10, s = 100, and k = 2.
The final average error, 54, in runs 2 through 7
is close to 0.1 and is based on 0.8(120) = 96 observations.

So we are doing about as well as we could hope to do. The
presence of outliers, whether with variance 100 or 400,

has little effect; ultimately IET screens out most of

these points. Similarly, the final error is not influenced
much by where, exactly, the subpopulation is (as long as

it is at least 3 standard deviations away) n»ar by whether

or not an increasing sequence of proportions is used. In

practice, naturally, we do not know that the right proportion

is, for example, 0.8. This is one reason why an increasing

sequence might be useful - one imagines gradually raising P

e m A A o




until IET begins wandering off, a sign that P has become

toco big.

Our last simulation, simulation E in Table 4.6, involves
four dimensional data. Each run is again identified by
a parameter vector (u2, Ny n3), but in all cases

2

= 100, ¢ = 400 if ny > 0, and the sequence of P's

)
is 0.5, 0.6, 0.7, 0.8. The results here are similar to
those that have gone before, but note that the final
average error in run #4 is 0.147, a rather large value,
presumably a result of the fact that it is based on

0.8(130) = 104 observations, some of which must, of

necessity, be outliers or belong to the subpopulation.

These Monte Carlo results, though they are neither
terribly comprehensive nor terribly accurate (in the sense
of having small standard errors) do reassure us that IET
behaves basically in the way that intuition would expect
it to. We have found that IET is insensitive to outliers
and small subpopulations that are sufficiently far away,
and that it does hone in on the major cluster we are
seeking. These results are not directly related to the
theoretical result in Chapter 3 concerning the distribution
of the stationary point, since we did not let IET iterate
to a limit but rather had it iterate a predecided number

of times. It would be interesting, however, to carry out

7 V3 W VDY U




another Monte Carlo study in order to get an idea of what,
on the one hand, the small sample distribution of the
stationary point looks like for spherically symmetric ob-
servations and how, on the other, it depends on the presence

of various kinds of contamination.

The reader may wonder why we chose to report "absolute"
errors rather than squared errors. The reason is that when
we began doing simulations, we found that rather large
values of eij) would occur with rather surprising fre-
quency. We were afraid that these occasional large values,
if squared, would have an undue amount of influence. Re-

porting absolute errors was a way of downweighting that

influence.

e et ————
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Chapter 5 - Scale Estimation

As we pointed out in Chapter 1, the estimate of
covariance yielded by IET, the final %, is biased towards
0. It turns out, in fact, that 2 is an estimate of c¢Z
where ¢ 1s an unknown constant between 0 and 1. 1In
essence, then, IET provides an estimate of both the shape
(the relative dimensions of the axes) and the orientation
but not of the scale 0of the ellipsoid corresponding to J.
It is for this reason that we devote this chapter to scale
estimation. First we shall describe the basic device with
which we intend to obtain an unbiased estimate of Z. Then
we shall discuss some properties of this method and
investigate its efficiency. In addition, a few alternative

scale estimators will be considered and compared.

Let us suppose that the conjecture at the end of

Chapter 3 is correct: namely, that the stopping point of

1
IET is guaranteed to be within oD(n /2)

Iy

of the stationary
point whose distribution we have derived. Then it £ollows
that the limiting 2 produced by IET will, as n - =,
ccnverge to the population covariance of the truncated
ellipscidal distribution given in equation (Al.22),

2) 2 -1

c(k,p)Z, where c¢c(X,p) = F 2(a2)/Fk(a and a” = F, " (p).

I k+

It would then be plausible to obtain an =stimate of [ by




dividing ¢ by c(k,p)

(5.1)  Fy = clk,p) 2

~

(The "U" in ZU is supposed to indicate that it is

an asymptotically unbiased estimate.)

The parameter p, which appears in c¢(k,p), represents

the proportion of points, from the cluster we have converged

to included in successive IET estimates, and not the
proportion of points from the entire sample, which was the
meaning of p in Chapter 2. In Chapter 3, the two
proportions coincided because there was only one cluster,
but typically in our applications there will always be
several clusters. So it is necessary to estimate p 1in

-~

order to compute ZU.

One might object that if it is necessary to "know"
approximately how many observations are in the cluster
before one can scale up 2 tc get an unbiased estimate,
then there is little point to this estimation procedure,
for one could simply use all of the points thought to
belong to the cluster and thereby obtain an unbiased
estimate directly. Though there is some justice to this
criticism, it must be remarked that the latter estimate

would surely be much less robust, as the observations
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with the largest influence on it are precisely those

points about whose correct classification we are least
certain. Earlier we suggested one way to approximate

the number of observations in a cluster: after reaching

a stopping point, gradually increase the number of points
included in the ellipsoid until IET begins to move away.
Here the basic idea is to base [ only on points whose
membership in the cluster is reasonably certain; then,
obtain the total number of points in the cluster by

throwing in points which are likely to belong but about
whose classification we nevertheless entertain some doubt.
Another possibility, which really embodies the same idea

is to plot a histogram of the Di's. If we are lucky, there
will be a relatively clean cutoff as there is in Figure 5.1.

Unfortunately such cutcffs are rather uncommon.

One consolation is that it is easy to compute the

bias introduced by using the wrong p 1in the eguation for

Z

g More precisely, if one uses p' 1instead of p, then

asymptotically, i will be off bv the factor

8]
c(k,o')/c(k,p). Indeed, for many ellipsoidal distributions
of interest, c(k,p) 1is increasing in p (in particular
for the normal distribution: see Lemma A2.1 and eguation

(A2.9)). Hence 1if one felt that p lay in a certain

interval, then «c¢(k,p) would lie 1in a corresponding

N e Sl il R e e o o
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interval and one could study the variation in 2 with p.

U

Later in this chapter we will introduce an alternative
estimator, called ;3, which does not require an estimate
of p. Unfortunately we shall find that it is much less

efficient than a close relative of §U called Gl’ at

least when the data are normally distributed.

But before going on to develop our ideas further,
perhaps it will be helpful to examine some numerical values
of c(k,p) (for the normal case), which may be found in
Table 5.1. When k =1 and we include 25% of the ob-
servations, 52 is only 3.3% of 02, on the average, but
if k = 7 and 25% of the data is included, 7 1is 42.5%

of what it should be, on the average. Further values of

c(k,p) may be obtained from Table A2.1, after making use

of the result in (A2.9), that c(k,p) =1 - bk((F;l(p))l/z)-

Note that (A2.9) is not true for all ellipsoidal families;
it does hold, however, for the normal one. It is a
remarkable coincidence that the bias reducing factor in
chapter 3, bk(a), is related in this way to the covariance

of the truncated normal.

Lemma A2.2 imp.ies that

-1
(5.2)  c(k,p) I 1 - (2/x)%/2 208 p( ) for large k

A R /P v v o ol bttt
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] - F((k/2)+l)2/k 2/k

(5.3) c(k,p) ~ (k/2)+1 P for small p

Hence, as k » =, c(k,p) » 1 as long as p > 0. Further-
more, c(1,p) = 0(p°), c(2,p) = O(p), and c(7,p) = 0(p>/")
as p » 0, which is to say that c(k,p) » 0 as p -+ 0

more and more slowly as k increases. This fact accounts

for the results in the above discussion when p = 0.25.

We would like to investigate the efficiency of the
estimator iU' The most satisfying approach to this
guestion would be to define a loss function, L(Z,iU), and
compute its expected value as n - » when the data belongs

to some family of ellipsoidal distributions. Then one

would compare the asymptotic risk to the corresponding
value for the optimal procedure. Unfortunately this
program is a difficult one to carry out. Therefore, we
shall make a variety of simplifyving assumptions so as to
make the problem more tractable. Later, we will return .

to comment upcon how much we have lost in making these

i

assumptions.

Henceforth we shall assume that there are n independent

observations: X;,...,X, v N(7,vB), where B is a known

/B! = 1. We shall be interested

k < X matrix such that

- e e - = . ] ‘
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in estimating v, which we shall sometimes refer to as the
scale of the distribution. Note that in this formulation
there is no contamination and, as a result, no ambiguity

associated with "p". It is convenient to introduce some

! -
further notation at this point. Let Zi = XiB lXi and

; 2 : _ 2
note that Zz; VX(k)* then define J; = 1(z; < t7), where

1(E) for an event E is the indicator function of that

event, and observe that Ji is a Bernoulli random variable
with parameter p = Fk(tz/v). (As before, a2 = Fil(p).)

We will often refer to the statistics J = n-lZJi,

37 = n'lZJizi, and 7 = n‘lzzi. It will be helpful to

write p = J, since J 1is an estimate of p, and

~2 -1 1

~ — - ]
a”~ = F,_ (p). Finally we introduce S = (nJ) ZJiXiXi.

Now we may present our first estimator of scale, Gl:

Jz/3

(5.4) v, = —.
ke (k,p)

1

The first natural gquestion to ask is: why is this a
plausible estimate of v? The numerator of (5.4) is

essentially v multiplied by the sample mean of nﬁ

X%k) truncated at az. On the other
2

hand, the denominator is the expectation of a X(k)

observations of a

~

truncated at a2. This latter observation follows from
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(Al.7), (Al.17), (A2.3) and (Al.23). Of course we would

prefer to use the expectation of X%k) truncated at a2,

but since a2 = t2/v depends on v, we use the estimate

~ ~

2 . . ,
a instead. Nevertheless, v, is a consistent estimator

1l
of v, a fact which can easily be shown by applying the

weak law of large numbers to J and JZ and using the

continuity of Fr and bk'

~

Since ZU is computed by truncating at a random

point and we are interested in studying simple estimators

that are similar to it, one might well ask why we truncated

at a fixed point in computing vy Indeed, we next intro-

~ 1

duce vy, an estimator which is identical to 51 except
that the truncation point is now random and such that
exactly ([np] observations are small enough to be included.
It will turn out however (see Theorem 5.6) that ;l and Gi
are asymptotically equivalent; as a result we can study

whichever one is more convenient and that one is vy

~ 1
Before giving the formula for vy it will be convenient

to set J;, = 1(2; < z([np]))' Then,
- '
(5.5) A il 7/ At b
‘ 1 ke (k.p) [(nplkc(k,p)

Formula (5.5) is simply (5.4) with J; replaced by J

[N . *
- I TS O T I, I .j
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(with the change that since p 1is now "fixed" by the

statistician, a2 = F;l(p) is now known). The duality

associated with either fixing t to get vy Or

o

~ !

¥ fixing p to get v, appears to be very general. For

~

example, the "t-fixed" estimators 52, 53, v, to be

studied shortly all have "p-fixed" counterparts

X ~t ~ 1 ~ !

. Vo v3, V- We believe that the proof of Theorem 5.6,

Tl which asserts the asymptotic equivalence of Gl and Gi
as well as of 52 and 5;, will provide some insight into
this phenomenon. However, we conjecture that there is a
theorem, or perhaps a metatheorem, which is yet to be
formulated precisely, that would make clear the general
nature of this duality. Such a theorem, we believe,

would for example obviate the need for working with order

statistics and their asymptotic distributions in many cases,
as in the derivation of the asymptotic distribution of the

median or the trimmed mean. y

By now the reader must be wcndering why we are so

~ ~ 1 1. '

interested in v and v,. Let S' = (nJ') ZJ.X.X. and
1 1 17171
-~ !
observe that another formula for vy is
Sr ook ter (staTh
1 C(klp)
{ Now suppose that we were to regard ; and




e i

L/k (obtained from IET) as "correct”. Then, we

/1%
could subtract off ﬁ from each of the n observations, 3
so that their population mean would be zero, and set
B = 7/1%.

~t

we can write v, = c(k,p)‘llill/k. But then

It would follow that, since §S' = i,

el o g

~

Essentially we have factored ZU into two parts and have

chosen to study the variability of only the first, or )

o

scale, part. 3

Before going on to compute the asymptotic distribution

of ;1' we shall introduce several alternative scale

estimators. It is appropriate to consider first the MLE

of v based on all of the data (i.e. Xl""'xn)’ which
we shall call ;O' Using the fact that the log-likelihood
of one observation is 2(v) = C - (k/2)log v - (2v) tx'B71x,

a simple calculation shows that the Fisher information

-~

associated with vy is Io(v) = k/2v2. It follows that

-~

(5.6) L(nl/z(vo-v)) + N(0, V as n -~ x

o)

where

“ i .
Py “L{hk“ e
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{(5.7) Vo = 2V2/k.

The formula for Io(v) is quite reasonable as it asserts
that the information in k 1l-dimensional observations is

the same as that in one k-dimensional observation.

The next estimator, 62, we will refer to as a
"Bernoulli-type" estimator because it only depends on

the Ji's:
~ _ 2 -1,~
(5.8) v, = t /Fk (p).

Actually, 52 is a maximum likelihood estimator, as we shall

see later. The "p-fixed" version of 52 is

~ _ -1
(5.9) v, = Z([np])/Fk (p).

We discussed earlier how in any application of IET,

we would not know the proportion of points, p, from a given

cluster included in the final ellipsoid. The next estimator,

Ve offers the possibility of surmounting this problem in a
formal way (as opposed to the ad-hoc ways we mentioned

before). We define vy to be the MLE of v wusing the

truncated normal density, which is

e

LA QUL R T SO CE GV O LU
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k
(27v) /Z(Fk(tz/v))_lexp (- f%x'B_lx)

-1 2

(5.10) (x;V) for x'B "x < t

Pe

o

otherwise

'l
o

based of course on the M observations xi such that

! J; = 1. This estimator does not use any information con-

cerning how many observations had Ji = 0. Of course,

Vi is the MLE of v based on the m smallest Zi's,

where now m 1is not random. We conjecture but shall not
~on

prove that the limiting distribution of V3 is the same

as that of 53. Incidentally, Cohen extensively investi-
gated estimation problems involving the truncated normal
distribution in the 1950's, but never, as far as we can

tell, studied the ellipsoidally truncated normal. See for

] example [4].

Finally, A

of the censored normal distribution, which is to say that

is the MLE for v based on observations {

? we "see" X, 1if J, =1 but learn only that J, =0
otherwise. Therefore, this estimator i1s based on knowing
how many observations are "missing", in contrast to §3,
which was based only on the xi's with J. = 1. Actually,

Vyr then, makes use 2f exactly the same information as

did &l : T and JZ: and it is therefore particularly

; L ‘ -
bt & o ot i B tih kol oat Aas as o A“.“mmmn-.,u VR
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appropriate to compare then. Again we conjecture but shall

not prove that Va has the same asymptotic distribution

-~

as v;, which is the MLE of v based on observing the [np]
smallest Zi's and knowing that there were n observations
altogether. 1Incidentally, the likelihood for one observation

-~

corresponding to vy 1is

k
(2mv) /zexp (- 5

(5.11)

1 - Fk(tz/v) if x'BTIx > 2.

Now we are ready to derive the asymptotic distributions

~ ~

of vy to Ve

Dl

Theorem 5.1l: As n » =,

e

(5.12) L(nl/z(Gl-v)) - N(0,V)) }
where
2 4

(5.13) v, = = [F, (a®) (1-F (a®)) 25

17 7 L7 Tk K 2

k+2 :
-2(1-F, (a%))F. . ( 2)32 < E2r @i -r? L a?y)
g(@ NE p@) =+ 5= K+2




-~

Proof: v, is a function only of the statistics (3,32).

We will derive the joint asymptotic distribution of these

two random quantities and obtain the asymptotic distribution

-~

of vy by applying the delta method. By the central limit

theoremnm,
1 - —
L2 (T8 - (upuy) 1)) > N(0,Q)
where
‘11 €12
C =
€12 €22
and (ul,uz)', and C are, respectively, the mean and co-

' =
variance of (J.,J3.2.)"'. Since 3J is Bernoulli, U] = Fk (a”),

and by (Al.8), u The variance of Jy is

_ 2
5 = kak+2(a ).

Fk(az)(l - Fk(az)) and by (2l1l.8),

€11 %
oy, = vk(1 - F (a’))F,,,(a®). Finally, by (Al.8) and
(A1.9), c,, = voIk(k+2)F, ,(a®) - k°F7,,(a®)]. Using

(Al.23). we may rewrite (5.4) as

~ J
V -
L wr

-1

Z
F.o(J J))
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If we define the function

4

-1 4
KF, ,, (Fy " (up))

h(uy,u,)

-~ —

then v, = h(J,3Z) and v = h(uysu,) . applying the so

called delta method we have the result that as n + «,

L(/H(;l—v)) + N(0,V;) where

- (dh ‘o dn
(5.14) Vy = (du) C(du)

(0) 1
and the derivative above is evaluated at u = (ul,uz).

It is easy to compute that

2

3h _ Frea (@)

Suy =TV 3 2

u(O) Fk+2(a )fk(a )

and

Sh | _ 1

EWE - 2,

2 ,(0) kF, ,,(a")

Then, using the fact that

2
a
k

I
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a straightforward evaluation of (5.14) reveals that (5.13)

holds. B

Before deriving the asymptotic distributions of the

remaining estimators, it will be convenient to record a

b simple result concerning the effect of a reparameterization

o on the Fisher information.

Lemma 5.1: Let Il(9) and Iz(¢) be the Fisher informations

associated with £(x;6) and £f(x;g(¢)), respectively. If

8§ and ¢ are scalars and g 1is a differentiable strictly

monotone transformation, then

(5.15) I,(8) = (g' (62T (g(m).

Proof: The proof is a simple calculation. N

S

] Next we derive the asymptotic distribution of 5 ]

Theorem 5.2: As n - »,

L (5.16) L(nl/z(:/z-v)) ~ N(0,V,)

where
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Proof: Note that ;2, as defined in (5.9), is the MLE of
v when we observe Jl""’Jn’ which are i.i.d. Bernoulli

random variables with parameter p = Fk(tz/v). Using
1

the notation of Lemma 5.1, I;(p) = [p(l-p) 1~ Further-

. dp _ _ =12 2
more, since 3= = v Ta fk(a ),

I,(v) = v%(asz(az))Z[kaz) (1-F, (a®))17t

which is equivalent to (5.17) since v, = Iz(v)-l.'.

If there are m observations of X such that

x'8" 1% < t2, then using (5.10), the log-likelihood
1

expressed as a function of a = tv /2 is 2(a) where

(5.18) m *2(a) = C + k log a - (82158 1)y,2 155 F (a?).
2 t2 k
. . . dl .
Then, the likelihood eguation, P 0, is
-1 tr (s8™h 2
(5.19) k e a" + b, (a) =1
4 k

If we let 53 be the solution to (5.19) and observe that

by definition, 63 = t2/5§, then we may write
ook ter s37h | kTher (s37h
3 - - 2
1 b, (aj) c(k,Fk(a3))
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an equation which strongly resembles (5.5). The next

theorem shows that vy = with non-zero probability for

a finite sample size.

Theorem 5.3:

-1
tr (SB ) K o3 - .
(5.20) L > s = vy =
-1 2
tr (S ) k _. > _t
(5.21) > oy vyt S,
a3

-~

where a, is the unique finite positive solution to the

likelihood equation (5.19).

To prove this theorem we shall need a lemma, which

is proved in Appendix 3.

Lemma 5.2: The function s(a) = ka °(L - b, (a)) is

monotone decreasing for a > 0. As a - 0, s(a) - k/(k+2)

and as a -+ =, s(a) - 0.

2

Proof of Theorem 5.3: We may expand Fk(a ) 1in powers
of a as in (A2.12) to obtain i
k . 4
2, _ a _a X a k 4
Fk(a )y = ZrKT(l —2—(-'“7(_’_?) + ?(k——+4) + o(a’))
‘Then,
et linebictiiotobbbnthinit el o it osdanlade ‘.M—A i




-79~ i
log F  (a”) = const. + k log a - 5 (53)
4
+ -a—z— k > + o(a4)
(k+4) (k+2)
and as a result of (5.18)
2 -1
-1 - a® kx tr (SB )
(5.22) m “2(a) = const. + 3 (k+2 t7 )
4 :
- 32 K ) + 0(34).
(k+4) (k+2)

2 -
Now let c¢” =t " tr (SB l) and observe that

-1 42 _ -2 _ _ 2 _ .2
(am) e ka “(1 bk(a)) c” = s(a) c”. 1If
c2 > k/k+2, then by Lemma 5.2, s(a) - c2 <0 VYa>o0 and
dg v . 1
therefore i < 0 a > 0. Hence, the maximum value of ;

2({a) 1is achieved at a = 0. On the other hand, if
c2 < k/k+2, then there is a unique a, such that s(ac)==c2 E

Ly Lemma 5.2. Furthermore, a, is the unique a > Q0 such

that CL 0. But, by (5.22), (a) 1is increasing for a

da
near 0O; since 21(a) - - » as a - =, there is at least t

one local maximum at an a > 0. We may now conclude that

the global maximum occurs at a_. Of course, 53 =a. B

-1

Why is it that when t 2tr (SB 1) > k/k+2,

»? Suppose that X has a uniform distribution in

4
S
]
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-1 2 -1
the ellipsoid {x : x'B "x < t°} and let Y =B X.

Then Y'Y = X'B-lx and Y has a uniform distribution

in St(O), the sphere of radius t. By (Al.5), the volume

of this sphere is dktk, where d, = K720 ((x/2)+1) ,
and its surface area is kdktk_l. Hence
k=1 % 2. k-lgp= 2
E(Y'Y) = (d,t") [ = kd, r r=(k/(k+2))t
0

and t-zE(X'B-lX) = k/k+2. Therefore, when

2 1

t “tr (SB ) > k/k+2, the sample looks, at best, as if

it is from a uniform distribution. Of course, as v - «,

the truncated normal approaches the uniform distribution.

Before proceeding to the computation of the asymptotic

distribution of v we investigate numerically the

3’
dependence of vy on S 1in the one dimensional case.

-~

We set B =1 and 52 = § and note that v3 = o when
s2 > t2/3. Table 5.2 contains some numerical wvalues of
sz/t2 and the corresponding ;3/52, the factor by which

we must multiply 52 to get our estimate.

Theorem 5.4: As n > »

(nl/z(G

{(5.23) L -v)) -~ N(0,V,)

3 3

where
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42 2 2 -1
(5.24) v, = “(F, (a®) [2-b, (a) (a®+2-k+kby (2)) ]

Proof: The derivative of the log of the density in (5.10),

written as a function of a, is

2
d"leog ¢ =1 2 2
t k X'B "x k k a
= - S - =2 4 2h o (a) -==b, (a)(l-5%—-D, (a)).
"‘:;;T a2 t2 a2 k a? k k k

Using the fact that

i1
e X2 %) = B - b (a)),
t a

where the expectation is taken with respect to P the
density of the truncated distribution, and recalling (Al.7),

(A2.7), and t2 = azv, we find that the Fisher information

for the parameter a is

2 2
= 4= _ 5k _ Kk~ _a
{5.25) Il(a) = 2—(1 bk(a)) + Zbk(a)(l < by (a)).
a a
. da -3/2
Since v - - jtv ; 1t follows by Lemma 5.1 that the

L : KN .
oy e e L BAA  t a R Lol L

[N P AP SN
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information associated with Vv is
a2
(5.26) Iz(v) = :;711(3)‘

As m *> %,

.

(5.27) L(m1/2(63-v)) > N(O,Iz(v)-
But as n > ®, m/n > p = Fk(az). Therefore applying (5.25),
(5.26), and (5.27), we have fhe result in (5.23) with

2 -1 ﬁ
vy = (Fe @1y . a i

Theorem 5.5: As n > =

(5.28) L(n1/2(64-v)) > N(0,V,)

where G
T S |

(5.29) vt = vt 4 vg

Proof: The proof is a calculation similar to thcse done

in the proofs of Theorems 5.2 and 5.4, 8

The fact that V;l = v;l + V;l in the preceding

theorem is an instance of a very general theorem suggested

o L . . : . . - .
b it atnckal & S ™ . TV '|'|' . L . ;
~ ol Scole et d ol
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by P. K. Bhattacharya. We will not give a formal proof
but will simply outline the argument for a simple version
of it. Suppose X has a density fe(x) and suppose
further that the space in which X takes values, X, is
partitioned into two parts: A and A; so X =AWV A,

Let P, = f fe(x)dx and define three new random variables,

A
2 truncated versions of X and an indicator based on X:

8

(5.30) Xy = ¥«1l[X € A],
(5.31) X, = X+1[X ¢ &],
and

(5.32) X3 = 1{X ¢ A].
Then X has density

1

fél)(x) = P-lfg(x)l[x ¢ Al

<D

and X2 has density




0f course X3 is a Bernoulli random variable:

Pr (X3 = 1) = Pe. Now let Il(e), Iz(e), I3(6) be the
Fisher informations associated with Xl’ X2, X3 and I(9)
the information associated with X. Then if we suppress

some algebra and assume that all necessary formal manipu-

lations are valid, we may compute

£ £
_ d 8.2 Tg
(5.33) 1,(8) = [ [gglog 517 5=dx
A b 8
1
2
(P,)
_ d 2 _ Y
= f [d—GlOg fG] fedx -;2—- ’
9
£ £
- _ d 8 ;2 9
(5.34) 1,(6) = [ [gglogy—p—1" 1=5—9x
= 8 9
A
12
(P,)
- 4 2 -8
_i [35log £,]17f ax T
A 9
and
(p,) 2
(5.35) I,(3) = 53—~
3 P, (I-P,)

where (5.35) follows from Lemma 5.1. But using (5.33),

(5.34), and (5.35), we find that

(5.36) I(3) = Pell(

(89
+
—
[
|
d
[§9]
|
N
I
+
H




The factors Pe and (l—Pe) appear in (5.36) because

X, and X are only non-zero with probabilities P and

2 8

1‘P3-

What we have shown is that the information in X can
be partitioned into three easily interpreted parts:
information from 2 complementary truncated random variables
and information from a Bernoulli random variable which
says which truncated variable is observed. No doubt a

theorem stating that such a partitioning is possible can

be proved in considerable generality.

We have now studied five estimators of wv: ;O through ;4
and have obtained their asymptotic variances: VO through V4
given in (5.7), (5.13), (5.17), (5.24), and (5.29). We
define the efficiency of Gi to be E; = VO/V. for

1l <i < 4. Of course by Theorem 5.5, E, = E2 + 33. We

also expect that E since vy and v, use the same

4 2 By
data and vy is the MLE. 1In Table 5.2 we give nume-ical

values for El through E4 for k=1,...,7 and

p=90.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95,

£

0.99, 0.999. Note that all of the efficiencies depend
1
only on a = tv or, alternatively, on p = Fk(a ).

Several interesting remarks may be made about the

results in Table 5.3. Note first that vy is extremely

PpRe)

i D
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inefficient: for example, when k =1 and p =0.7,
Eq =0.032. This means that if one bases ;3 on 100r
observations, one will do about as well as one would do
using ;0 when there were 3r observations. It is impor-
tant to remember, of course, that only about 70r obser-
vations will be used in computing 53; the others will
¥ be truncated. Still, however, the result is striking.

A crucial point is that using 93 is the best we can do

if we decide that we cannot guess the proportion of points

that are not truncated (included in the estimate).

When k=1 and p = 0.7, E2 = 0.556; hence, not

knowing any of the actual values of the observations
results in a loss of only about 50% of the information.

This remark is less surprising when one considers the

2

for instance, the use of the median to estimate the mean

similarity between the mode of estimation used in v and,

of a normal (see equation (5.9)). Our next theorem will

-~ !
demonstrate that vy and v, are asymptotically equivalent.
Finally, we observe that, in general, El/E4 is about 0.8; i
hence, the loss of information due to not using the MLE is

not severe. It seems appropriate to conclude that ZU is

likely to be a reasonably efficient estimate.

; Theorem 5.6: As n — =

dinibiediches sitiaiesith Sibisanilon PR paw PR Ao o




{5.37)

and

(5.38)

Proof:

(5.39)

and

(5.40)

First we derive (5.40). We will write F

We

Lt/ 2 (5 = v)) > w0, v))

L2 @ =) - N(0,V,).

will prove the theorem by demonstrating that

1
/2,

~ 1 -~

vy + op(n

<
[
]

1

~ 1

vy, =V, + op(n

/2y

kn for the

empirical distribution corresponding to F,. It is

k

possible to rewrite (5.8) and (5.9) as

(5.41)

and

(5.42)

- Fen(p)




- 1
By a Taylor expansion, since p-p = Op(n /2),
~ 1 {
(.43 FLE) = Fe) 4 =B+ o (%)
fk(Fk (p))

and using the Bahadur representation [2], ;

_ _ _: 1
g (s.40) Flp) = Ftp) ¢ —EBE—+ o n /2.
fk(Fk (p))
Hence, by (5.43)
-1 ;
FL*(p) ~ 1 ,
(5.45) E— =1 - ——F P + o, (n /2, 3
F, () Fi (p) £ (F " (p)) ;
1
and from (5.44) we derive 3
Fo L (p) ~ 1 :
(5.46) kn -1 - p-p + -7/2 ]
=1, =1 = op(n 77~ :-
Fi (p) Fp (p) £ (Fy (p))

But (5.45) and (5.46) imply (5.40). The arcument for

(5.39) is very similar. First observe that we may rewrite

(S.4) and (5.5) as follows:




e T ey

..89_
and
-1
Fkn(p)
N é xdF, . !

(5.48) vy = V| [ng]

Fk (p?

g xdFk

Using a Taylor expansion we may write

PN (B) it (p) N
-1 ~ - /
(5.49) [ xdF, = { xdFy + Fp (p)(p-p)-+op(n

2y,

0 k 0

and by the uniformity lemma of chapter 3 (Lemma 3.3), since
. 1
(5.44) holds and p-p = Op(n /2),

bk Atk +a stk
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Substituting (5.44) in (5.50) we obtain

FoL Fo1(p)
kn k -1 - ‘1/2
(5.51) é xdF, = é xdF,  + F, 7 (p) (p-p) + Op(n ).
F;l
If we divide | xdFkn by (5.49) and expand, then we find
0
-1 -1
F . (p) F .o (pP)
é xdFyn é xdFy F;l(p)(é—p) 1
(5.52) T ==3 (1~ T ) +op(n )
ij (p) F . (p) ka (p)
xdF xdF xdF
0 kn 0 k 0 k
-1 -1
F, 7 (p) F, = (p)
k k _1/2
Since é xdF, = é xdF, + Op(n ), we may

write (5.52), using (5.47), as

-1
Fk (p)

But using (5.48), and dividing (5.51) by xdF, .

we may concluce
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which demonstrates (5.39). W

All of the analysis we have done in this chapter has
been based on the assumption that B 1s known and that the
mean of the normal distribution we are working with is 0, or,
equivalently, that it is known, say equal to u. What
relevance do our results have when u, B are themselves

unknown, as 1is the case 1in most applications?

It is interesting that the information matrix

I(v,u,B) has a block diagonal structure, that is,

Il(v) 0 \
(5.55) I(v,u,B) =

0 Iz(u,B) /

when the densitv o1 X is

k
(5.56) 5(x;v,u,B) = (27v) " “2exp (- =—(x-u)'B L (x-u)).

2v
To see that this assertion is true, we first reparameterize
> by a differentiable transformation (u,B) = g{(?), where
3 ranges over some open subset of a Euclidean space.

(Recall *hat B 1is subject to the restriction B’ = 1.)

Then we may rewrite (53.536) as
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(5.57) log 6(x;v,8) = - % log (2mv) - -z%h(x,e)

where h is a differentiable function. By differentiating
(5.57) with respect to 6 and noting that E(é% log ¢) = 0,
we conclude that E(é% h(X,8})) = 0. But that implies that

2 -
E(gj—a—gm = g((2v) "L 529‘ h(X,8)) = 0, which means that (5.55)

is true. Of course, the consegquence of the fact that the
information matrix is block diagonal is that the asymptotic
distribution of the MLE of v, v, is the same whether (u,B)
is known or is simultaneously estimated with v. So, for
instance, the asymptotic variance of 50, V0 = 2v2/k,

given in equation (5.7) is also the asymptotic variance

of the MLE of v when u and B are estimated at the same

time.

The information matrix will also be of the form
shown in (5.55) if we observe the truncated or censored
version of (5.56), the densities for which are given in
equations (5.10) and (5.11) (though in these formulas x
must be replaced by x-u). But the block diagonal structure
is dependent on having the truncation or censoring done
with respect to the correct values of u and B!
Certainly, in our applications the truncation or censoring

is done in a data dependent way and therefore does not

. SR SRR TR
VRTINS WL IPTNRNE S BIe. PO iy SN

T AR




satisfy this requirement.

In practice, we expect that the estimates of u and
B to be used in the various scale estimates will be de-
rived from ellipsoidal trimming. Conceivably, then, one

-~

could derive the asymptotic distributions of 52, 63, vy
(when u© and B are estimated) using the knoyn asymptotic
distribution of the stationary point of the IET algorithm.
Such a line of analysis appears to present considerable
difficulties, although perhaps they are not insurmountable.
The asymptotic distribution of iU (see (5.1)) follows

as a direct consequence of the distribution of the

~ ' ~ Il/k

stationary point; since. v, = [ZU , its distribution

may be computed directly.

We shall not attempt to carry out any of the above
program here and it is true, as a result, that our knowledge
concerning the various estimates of scale remains fundamentally
incomplete. It is our hope nevertheless that the various
numerical and analytical results concerning Vl""'v4 do
provide a rough picture of these estimators. For instance,

they provide, at the minimum, lower bounds to the true

squared error.




m——— P

o ———— e v e : S W - :
—— tcsante : ot el e

-94-

Chapter 6

Conclusion

In this thesis we have studied the iterative ellipsoidal
trimming algorithm from a number of different points of
view. Based on our experience with IET as a data analytic
tool and the plausibility arguments in chapter 2 concerning
its behavior, we would conclude that it can serve an
important role as a clustering algorithm when the clusters
being sought are approximately ellipsoidal. It will be
especially useful when the statistician wishes to simulta-
neously find a cluster and estimate its location and shape
(perhaps as a prelude to searching for smaller hidden

cluysters in its tails).

In chapters 3 and 4 we obtained analytical and
numerical results concerning the performance of IET in
its capacity as an estimation tool. Certainly the most
pressing work still to be done in that area is the proof
of the conjecture we stated at the end of chapter 3 con-

cerning the distribution of the stopping point of IET.

The f£ifth chapter dealt with the problem of estimating
the scale of a cluster after one has already obtained
estimates of its location and shape. The status of the

results presented there is somewhat unsatisfactory, as

PP P SR N S haum e
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the results we derived concerning asymptotic variances
of the estimates were based on the assumption that the

location and shape are known, rather than estimated.

b b
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Appendix 1
Spherically Symmetric Distributions

In this appendix we collect a variety of results
concerning spherically symmetric distributions. Suppose
that, as in chapter 3, g(t) 1is a nonnegative function
defined on the nonnegative reals whose behavior as t + =
and degree of differentiability are suitable for our pur-
poses, where "suitable" means that all of the formal
manipulations involving g that we perform are, in fact,
valid. We generate a spherically symmetric density for

each dimension k > 1, f(x) = c;lg(lxlz), where

2

k
|2 = ) xj. The density of the generalized X%k)
i=l

| %

variable, T = IX]Z, where X ~ f(x), may easily be derived

using (Al.6) and equals

K2 (e/2)=1_ 0
T(k/2)c,

(Al.1) fk(t) =

and its cdf is Fk(t).

From each £f(x), in turn, we may generate a multi-
variate location-scale family, £(y; u, A), where

£(y; u, A) 1is the density of

1
Y=u+ A /zx,
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and A is symmetric and positive definite. It is
reasonable to refer to these distributions as ellipsoidal
distributions. Incidentally, while the expectation of Y

is u, the covariance of Y is not, in general, A. Since

. . L 1
the covariance matrix for X is just (2nck) ck+2Ik

(a fact which follows from equation (Al.7) below), the
. . _ -1
covariance of Y is Y = (2"ck) CrpoPe

-t/2

If g(t) = e , then the preceding construction

leads to the multivariate normal family of distributions,

(2ﬂ)k/2

with Cp = . Another, more general, form for g

that is a vaiuable source of examples is

' (Al.2) g(t) = exp(-rts).

k/2r-k/25

In this case, Cp =7 s-lF(k/2)-lT(k/2s).

The bias reducing function introduced in Chapter 3,

c;lg(aZ)
bk(a) = 3 , can be easily reexpressed in terms
F . (a") /v, _(a)
k k
of fk and Fk as
Zasz(az)
(Al.3) b (a) = ————
kF, (a”)
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2
-1 2fk+2(a )

(Al.4) b (a) = [(2m¢,) "oy ]———5—
F (a”)

; by making use of the formula for the volume of a

k dimensional sphere of radius a,

wk/z k
(Al.S) Vk(a) = W

given, for instance, in Apostol [1, p. 411l]. It will be

useful to record, in addition, that the surface area of

P T R

such a sphere 1is

2“k/2

4 {Al.6) Ak(a) = f.—(mTa

k-1

The next lemma expresses a variety of integrals in

terms of the generalized x2 density and distribution
function. We will set S = 5,(0), the ball of radius a

centered at the origin.
Lemma Al.l:

(Al.7)  [(x'x)ellg(x'x)dx = kM
L X 1

2.-1
(Al.8) [ xjc,

glx'x)dx = M1
S

(Al.9) [(x'x)zc;lg(x'x)dx = k(k+2)M,
S

e e L ORI W F -~
k antth. an. AT VORI WAPEIP YOS AL.&"A:‘Q«.L._' o .
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: 4 - .
3 (al.10) f xlcklg(x x)dx = 3M,

S

2 -
2

1 \ -
" g(x'x)dx = M2

(AL.11) [ x3x
S

klg'(x'x)dx = kM

(Al.12) f(x'x)c

S 3

2 _-1_, =
(A1.13) é X709 (x'x)dx = M,

; (Al.14) f(x'x)zc;lg'(x'x)dx = k(k+2)M,
1 s

ﬁ
; (al.15) f x4c-lg'(x'x)dx = 3M
r ) 3 17k 4
ﬁ {Al1.16) é xixgcilg'(x'x)dx =M,
:
where
(AL.17) M, = (27c,) Yc, . F, . (a?)
‘ 1 k k+27 k+2
- -2 -1 2
(Al.18) M, = (2m) Cx ck+4Fk+4(a )
(A1.19) M, = (2mcy) Yo, £, ..(a%) - F,(a%)/2
¢ 3 k k+27k+2 k
_ -2 -1 2, _ -1 2
(Al.20) M, = (2m) Cye ck+4fk+4(a ) (chk) ck+2Fk+2(a )/2. r




Proof: We may demonstrate (Al.7) by putting r2 = x'x,
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integrating with respect to Ak(r)dr, and then setting

t = r2. Of course (Al.8) is a trivial consequence of

(Al.7). To derive (Al.9), use the same substitutions as

1
for (Al.7). To obtain (Al.10), let r = (x'x) /2, and

Yy = Xy for 1 < i < k-1; then the integral may be written

a - 2_1
2f dr cklg(rz)r f 2 2 (£ - ) yy) /zyidy.
0 L y.<r i<k
i<k 7

But it is easy to show that

_1
[ (rz-yi- z yi) /zdyz eee Ay
2, 2.2 1<i<k
Ly ryy
1<i<k
C (p2oy? (32 _aKLI/2
7 T((x-1)/2)

from which it follows that

k+2

k/2
2 . 2,-Y/2 4. _ __3n
/ (r®= T yi) v &Y = eRa TR T
z

Then, finally, the integral in (Al.10) is straightforward
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to obtain. Since (x'x)2 is the sum of k terms of the
form xg, and k(k-1) terms of the form xixi (i#3),

by symmetry we conclude that

[0 2fax = k [ x¥fdx + kk-1) [ x%x2£(x)dx
1l 172
S S ]
which implies (Al.ll). The five integrals, (Al.12) - (Al.l6),

are entirely analogous and are obtained in a similar way,
the only difference being that an integration by parts is
necessary to get rid of the g' (hence, the presence of

2 terms in the expressions for M; and M,). | |

It follows from eguation (Al.8) that the covariance

of the truncated spherically symmetric distribution is just

2
-1 Frea (37

. 2
(Al.21) Cov(X|X'X < a) = @mc) “¢p,, 5— 1
Fk(a )

k*

Similarly, the covariance of the truncated ellipsoidal

distribution is

, -1 2 - Py, (a”)
(al.22) Cov(Yi(Y-u)'A (Y-u)_<_a ) = (2'T1'Ck) Ck+2 -—F—(—aiT—A.
k
Recalling that the covariance of Y 1is [ = (2ch)-lck+2A,

and defining

-1
F,_ . (F_t(p))
(A1.23) clk,p) = —£x2 pk ,




y'

where p = Fk(az), we may finally write the covariance of

the truncated distribution as simply

c(k,p)Z.
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Aggendix 2

Multivariate Normal Distribution

Our two intentions in this appendix are to specialize
the results of appendix 1 to the normal distribution and
to give some detailed analytical and numerical information
about the function bk(a) in this case.

(21r)k/2

First note that since Cy = when

X~ N(O,Ik), as we shall always assume in this appendix,
) -1 -2 -1

\ = =
it follows that (chk, Cr+2 1l and (27) Sk ks 1,
which results in several simplifications in the formulas
of appendix 1. For example, (Al.4) becomes

2

2f (a®)

(A2.1) by (a) = —<2
F (a™)

A well known property of the chi-squared distribution is
that

(A2.2) 2f (t) = Fk(t) - F (),

k+2 k+2

a fact which may be verified by differentiating both sides
of the equation (and which is not true in the general
spherically symmetric case). By making use of (A2.2), we
find that equations (Al.17) - (Al.20) may be greatly

simplified. Now,

N T
CAEARgY PR v LAy . ., N ° .s' . . N .
wy il Las Zatas U a s RGN TPF R P S U1 -
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A2.3) M, = F,..(a%)
(A2. 1 k+2 @
(A2.4) M, = F,_.,(a%)
. 2 = Frig

- _ L 2
(A2.5) My = - 3F, (%)

1 2
(A2.6) My = - 3F,,, (%),

Actually, (A2.5) and (A2.6) follow immediately from (A2.3)
and (A2.4), since g'(t) = - %g(t) for the normal case.

Another important fact is that as a result of (A2.1) and

(a2.2),
P (@)
(A2.7) bk(a) =1 - ———T-—.
E‘k(a )

But as a consequence of (A2.7) we find that the covariance
of the truncated multivariate normal (the specialization

of (Al.22)) is:
' -1 2, _
(A2.8) Cov(Y|(¥-u)'Z “(Y-u) < a) = (1-b, (a))Z.

Another way of saying the same thing is that for a normal

distribution, by (Al.23),
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1
(A2.9) c(k,p) = 1 = bk((Fil(p)) /2y,

We collect a few facts about bk in the next lemma.

Lemma A2.1: The function bk(a) is strictly decreasing on

(0,). As a goes from 0 to =, b, decreases from 1

to 0. Furthermore,

(82.10) b, (a) = (k/a)b, (a) (1 = a’/k = by (a))

and

(A2.11) bk(a) 1l - az/(k+2) + O(az) as a - 0.

/ 1

Proof: Let r, = 12521 (k/2)17Y. Then,

fk(az) = rkak‘z(l - a2/2 + o(a%)

and

(32.12)  F(a%) = 2k‘lrkak<1 - x+2) Yka?/2 + o0(a?)).

Therefore, using (Al.3)},

1

bk(a) = (1 = a2/2)(1 + (k+2)— ka2/2) + o(az)
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which implies (A2.11), which in turn implies that bk -1

as a + 0. To prove that bk is decreasing we shall show
that
(A2.13) b(a) > 1 - a’/(k+2) VYa > o,

which, in conjunction with (A2.10) and the fact that bk >0,
implies the result. Of course (A2.13) is trivially true

when a2 > k+2. So assume a® < k+2, let t = a2, and call

thk(t)
a(t) = W ~ (1 - t/(k+2)).
k

Then it will suffice to show d(t) > 0 for 0 < t < k+2.
Let dg(t) = d(t)F (£)/(1 ~ t/(k+2)). sSince d, has the
same sign as d, it will be enough to prove that do(t) > 0,
or since dO(O) = 0, that dé(t) >0 for 0 < t < k+2.

But

. 2£, (t) . 2
d,(t) = ( Yy >0
0 k(1-t/ (k+2)) ¢ K+2

for 0<t<k+2..

14

Our next result describes the asymptotic behavior of bk'

el LTS aramie e
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Lemma A2.2:

- -1
b (LN 2 o (z/m /2 2L _(BD) gk » =

A2.14
( ) 5

(a2.15) b ((FHen /P =

_rks2)+1) %% 2k 2/k

k/2) ¥ 1 P + o(p ) as p -+ 0

Proof: v2k £, (k + avZk) +~ ¢(a) as k > =
} and

-l -
F (P)-k l(p) as k =+ o,
V2K
Hence, V2K fk(Fil(p)) > ¢(¢'l(p)) as k - .

But then

/)Y 2 (Frten Y = em it erg e /e

PR —l
-1, /% £, (FoL(p))
Fem (P)=k (/0172 k_k

= m i — 5
Y2k

-1
NETCH IR

which implies (A2.14).

By (A2.12),
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p=F (32) = (2/k) 2 + o(ak) as a -+ 0
k X721 (x/2)
Hence
a? = 12%2r ((k/2)+1)p1%* + 0 (p2/%) as p » 0.

Using (A2.11) we conclude that (A2.15) holds. |

We end this appendix by presenting some numerical

values of bk in Table a2.1.




-109-

Appendix 3 - Proof of Lemma 5.2

We prove Lemma 5.2.

Lemma 5.2: The function s(a) = ka-z(l - bk(a)) is mono-

tone decreasing for a > 0. As a + 0, s(a) + k/(k+2)

and as a + », s{(a) + 0.

Proof: By (A2.11) in Lemma A2.1, b, (a) = 1 - a’/(k+2) + o(a?).

Therefore, s(a) = k/(k+2) + o(l) as a + 0. Since b is

k
bounded, s(a) + 0 as a - ». After some algebra we find
that

' -3 2 2
s'(a) = -ka “[2 + (k-2-a )bk(a) - kbk(a)].
Let
2 k-2-al
Q(x) = x° - (————)x - 2/k.

k

Then, s'(a) < 0 iff Q(bk(a)) < 0. The quadratic equation
Q(x) = 0 always has both a positive and a negative solution;

we define hk(a) to be the positive sclution:

2 1/2 2

2
a“+2-k a“+2-k
hk(a) = [(__7E__) + 2/k] "

Since as x - + », Q(x) - + », we may conclude that




Q(b, (a)) < 0 iff by(a) < h (a), since by (a) > 0 Ya > o.
Note that hk(O) = 1 and, therefore, hk(O) - bk(O) = 0.

We will show that g, (a®) = (h (a) - by (a))F (a®)/h (a) is
positive for all a > 0 by showing that its derivative

is always positive. Let s = az, g = (s+2-k)/2k, and

r = (q2 + 2/k)l/2. Then, after a tedious computation we

find that

(S k) (k+2)® - s(x-2)) )

g. (8) =
k r(r-q)° k2 23

It will suffice to show that

ke2 ., (Ues2)? - s(k-2)
k2 2k

But upon squaring and expanding both sides of this inequality,
and after more tedious algebraic manipulations, we find
that it is equivalent to (k+2)2 > (k-2)2, which is, of

course, true for Lk > 0. B
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Figure 2.1

f $+“v~+|~3 valve
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1 t
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Note: This figure represents one iteration of IET in one
dimension.

Figure 2.2

Figure 2.3

TN )
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—

Note: The stopping "window" of IET may contain two clusters
if p 1s toc big. Figures 2.2 and 2.3 illustrate this
phenomenon in 1 and 2 dimensions, respectively.
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Table 2.1 ~ Example 1

- . 1
iy Yy |z, | |L, |
-2 2 8 18 }
-2.17 2.98 11 15 3
-1.51 3.52 14 12
-1.05 4.25 18 8
-0.53 5.72 20 6
-0.23 6.80 23 3

0.17 10.75 25 1

0.45 25 25 1

Note: The successive estimates are produced by k-means 1
operating on 8 N(-2, 1) and 17 N(2, 1) observations

and one outlier at x = 25.

Table 2.2 - Example 2

uy o,? 5 PR S B Y
-2 T 2 1 8 18
-2.18 0.59 2.98 29.8 6 20
-2.21 0.15 2.47 29.3 3 23
-2.41 0.013 1.89 27.8 2 24
-2.49 1074 1.72 27.3 0 26

Note: The successive estimates are produced by

k-means 2 operating on the same sample as was used in

Example 1.

.. . . .
Aot i okt B P ';.e.;d.mm-ﬁg.* [T ’j
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Table 3.1

3 et (1-p) p Yo s (1-p))
0.8 -0.84 0.35
0.5 0 0.80
0.2 0.84 1.40
\ 0.1 1.28 1.76
‘ 0.001 3.09 3.37

Table 4.1 - Values of .

i

| k My 1-my

| 1 0.798  0.363

| 2 0.886 0.215

| 3 0.921 0.151
4 0.940 0.116

Note: m. is given in equation (4.1).




Table 4.2 - Simulation A

9 e €5 €3 o

Wy = 0 0.092 0.109 0.124 0.133 0.138

(0.004) (0.006) (0.007) (0.008) 10.008)

wy, =1 '0.104 0.126 0.148 0.161 0.168

(0.006) (0.006) (0.007) (0.008) (0.008)

% Wy = 2 0.154 0.146 0.155 0.165 0.170
! (0.006) (0.007) (0.007) (0.008) (0.008)
My = 3 0.209 0.152 0.152 0.161 0.170

(0.906) (0.008) (0.008) (0.009) (0.009)

u, = 4 0.267 0.159 0.151 0.155 0.160

(0.007) (0.007) (0.007) (0.007) (0.007)

Note: 1In all rumns, k=2, nl=100, n2=10, n3=0, s =100,
p; = 0.5 for 1 < i < 4, and My = j is to be interpreted as

Hy = (3,0). Standard errors are in parenthesis. In all

simulations, 4y = (0,0).

e
i i Bl amimant, A o it s o A ]_1 TP PP -
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]

= 0.5, p, = 0.6, Py = 0.7, p,

Table 4.3 ~ Simulation B

e

0
0 0.089
(0.004)
1 0.096
(0.005)
2 0.157
(0.006)
3 0.206
(0.007)
4 0.269
(0.007)

Same parameters as in simulation A except for

€1
0.103

(0.006)

0.111

(0.006)

0.142

(0.0086)

0.149

(0.008)

0.169

(0.008)

€5
0.122

(0.006)

0.127

(0.006)

0.141
(0.008)

0.136

(0.008)

0.142

(0.008)

= 0.8.

(0.

]

122

.006)

.131

.006)

<143

.007)

.133
.007)

.125

008)

€4

0.114

(0.006)

0.127

(0.006)

0.134

(0.008)

0.119 |
(0.006)

K
-

0.109

(0.006)
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f
Table 4.4 - Simulation C
o %1 2 ©3 4
0 0.092 0.100 0.105 0.107 0.107 ]
(0.004) (0.005) (0.006) (0.006) (0.006)
1 0.107 0.114 0.124 0.128 0.129 A
(0.005)  (0.006)  (0.006)  (0.006)  (0.006) 1
2 0.161 0.136 0.136 0.135 0.135
(0.006) (0.006) (0.007) (0.007) (0.007)
3 0.199 0.116 0.112 0.112 0.111
(0.006) (0 .006)  (0.006) (0.006) (0.006)
4 0.273 0.117 0.120 0.120 0.120
(0.008) (0.007) (0.007) (0.007) (0.007)
5 0.329 0.103 0.107 0.111 0.112
(0.007) (0.006) (0.006) (0.006) (0.006)

Same parameters as in simulation A except for

0.8 for 1 < i < 4.
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Run

1. (3, loo,
0.302
(0.015)

2. (3, loo,
0.280
(0.013)

3. (3, 100,
0.310
(0.015)

4. (4, 100,
0.328
(0.016)

5. (4, 400,
0.533
(0.026)

6. (4, 400,
0.511
(0.027)

7. (6, 400,
0.558
(0.029)
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Table 4.5 - Simulation D

0.5, 0.5, 0.5,
0.195
(0.010)

0.5, 0.6, 0.7,
0.186
(0.010)

0.8, 0.8, 0.8,
0.126
(0.006)

0.5, 0.6, 0.7,
0.202
(0.010)

0-5’ 006, 0.7'
0.270
(0.012)

0.8, 0.8, 0.8,
0.138
(0.008)

0.5, 0.6, 0.7,
0.265
(0.012)

Note: The format is
2
(Uzl G Plr Pzr P3: P4)

0.5)
0.175
(0.009)

0-8)
0.143
(0.008)

0.8)
0.111
(0.006)

0.8)
0.145
(0.007)

0.8)
0.170
(0.008)

0.8)
0.109
(0.006)

0.8)
0.171
(0.008)

0.171
(0.008)

0.121
(0.007)

0.110
(0.0086)

0.111
(0.006)

0.126
(0.006)

0.106
(0.006)

0.131
(0.006)

0.169
(0.008)

0.106
(0.007)

0.112
(0.006 )

0.096
(0.005)

0.099
(0.005)

0.105
(0.006)

0.102
(0.005)

TR
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l. (3, 1o,
0.167
(0.005)

2. (6, 10,
0.279
(0.005)

3. (7, 10,
0.596
(0.020)

4. (7, 10,
0.707
(0.024)

Note: The format is the same as in simulation D except that

the parameter vector is (”2’ P n3).

_ 2
n, = 100, ¢

and k = 4.

Table 4.6 - Simulation E

-120-

0)
0.139
(0.005)
0)
0.129
(0.005)
10)
0.193
(0.008)
20)
0.219
(0.006)

0.139

(0.005)

0.132

(0.005)

0.137
(0.005)

0.136
(0.005)

= 400, p; = 0.5, p, =

0.6, Py =

0.131

(0.005)

0.124

(0.005)

0.118

(0.004)

0.103
(0.004)

For all runs

0.121

(0.004)

0.115

(0.004)

0.100
(0.004)

0.147

(0.004)

0.7, Py = 0.8,
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Values for c(k,p) in
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Table 5.1

the normal case

k/p _ 0.025 0.50 0.99
1 0.033 0.143 0.925
2 0.137 0.307 0.953
7 0.425 0.590 0.980




Table 5.2

Numerical values of 5 when k

3

s2/t2

0.081
0.108
0.146
0.193
0.214
0.235
0.255
0.274
0.290
0.324

;3/52

1.006
l1.03
1.10
1.29
1.42
1.66
2.00
2.53
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Table 5.3 = Efficiencies of Scale Estinators

G e W ~

Qo WE

oYUV e W ot W

oUW o

DOV W

Ey

0.012
0.076
0.098
0.113
0.125
0.135
0.143

0.101
0.155
0.191
0.216
0.234
0.248
0.260

0.158
0.238
0.283
0.314
0.335
0.352
0.366

0.228
0.324
0.376
0.409
0.433
0.450
0.465

0.307
0.414
0.469
0.503
0.527
0.545
0.559

0.398
0.510
0.564
0.597
0.620
0.637
0.650

E,

0.055
0.100
0.131
0.153
0.170
0.183
0.194

0.120
0.199
0.246
0.278
0.300
0.316
0.329

0.194
0.297
0.351
0.385
0.407
0.424
0.437

0.277
0.391
0.445
0.477
0.497
0.512
0.523

0.368
0.480
0.528
0.553
0.569
.580
.588

oo

.463
.560
.594
.610
.620
.625
0.629

o0 UVUOO0O0

E;

0.000
0.000
0.000
0.001
0.001
0.002
0.002

0.000
0.001
0.002
0.004
0.006
0.007
0.009

0.000
0.003
0.007
0.011
0.015
0.018
0.021

0.001
0.009
0.017
0.024
0.030
0.035
0.040

0.004
0.020
0.034
0.045
0.054
0.062
0.068

0.012
0.040
0.062
0.079
0.092
0.103
0.111

E,

0.055
0.100
0.132
0.154
0.171
0.185
0.196

0.120
0.200
0.249
0.282
0.305
0.324
0.338

0.194
0.300
0.358
0.396
0.422
0.442
0.458

0.278
0.400
0.462
0.501
0.527
0.547
0.562

0.372
0.500
0.561
0.598
0.623
0.642
0.656

0.475
0.600
0.656
0.690
0.712
0.728
0.740
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P k El E2 E3 E4
1 0.503 0.556 0.032 0.588
2 0.612 0.621 0.079 0.700
3 0.662 0.637 0.111 0.748 ¢
.7 4 0.692 0.641 0.134 0.775 )
5 0.712 0.642 0.152 0.794 K
6 0.727 0.642 0.165 0.807 :
7 0.738 0.640 0.176 0.817 ?
1 0.628 0.632 0.079 0.712
2 0.723 0.648 0.152 0.800
3 0.765 0.639 0.197 0.836
.8 4 0.789 0.630 0.226 0.856
5 0.805 0.621 0.248 0.869
6 0.817 0.614 0.265 0.879
{ 7 0.826 0.607 0.278 0.886
1 0.781 0.640 0.207 0.847
) 2 0.847 0.589 0.311 0.900
: 3 0.874 0.555 0.365 0.920
9 4 0.830 0.532 0.400 0.932
5 0.900 0.515 0.424 0.939
6 0.907 0.502 0.442 0.944
j 7 0.913 0.491 0.457 0.948
1 0.876 0.552 0.368 0.920
2 0.917 0.472 0.478 0.950
3 0.934 0.430 0.531 0.961
.95 4 0.943 0.404 0.563 0.967
5 0.949 0.385 0.585 0.971
6 0.953 0.372 0.602 0.973
7 0.956 0.361 0.615 0.975
; 1 0.970 0.280 0.703 0.983
g 2 0.982 0.214 0.776 0.990
; 3 0.986 0.185 0.807 0.992
! .99 4 0.988 0.168 0.826 0.994
: 5 0.990 0.157 0.838 0.995
6 0.991 0.148 0.847 0.995
7 0.991 0.142 0.854 0.996
1 0.997 0.068 0.930 0.998
2 0.998 0.048 0.951 0.999
3 0.999 0.039 0.960 0.999
.999 4 0.999 0.035 0.965 0.999
5 0.999 0.032 0.968 0.999
6 0.999 0.030 0.970 1.000
7 0.999 0.028 0.972 1.000

&
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Table A2.1 - Numerical Values for bk

k
j p 1 2 3 4 5 6 7
f a 0.126  0.459 0.764 1.031 1.269 1.485 1.683
| L b (a)  0.995 0.948 0.887 0.831 0.782 0.741  0.705
1 a 0.674 1.177 1.538 1.832 2.086 2.313  2.519
| > b (a) 0.857 0.693 0.593 0.526 0.477 0.440  0.410
1]
' a 1.282 1.794  2.154 2.447 2.700 2.925 3.131
. ASIEY 0.562 0.402 0.326 0.281  0.249 0.226  0.208
} a 1.960 2.448 2.795 3.080 3.327 3.548  3.751
| .95 by (a) 0.241  0.158 0.123  0.103 0.090 0.081  0.074
.
é 0y 2 2.576 3.035 3.368 3.644 3.884 4.100 4.298
] 77 b, (a) 0.075 0.047  0.035 0.029 C.025 0.022  0.020

] Note: a = [Fk-l(p)]-l/2
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